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Rational drug development would be impossible without selecting the appropriate formulation route. However,
pharmaceutical scientists often rely on limited personal experiences to perform trial-and-error tests on diverse
formulation strategies. Such an inefficient screening manner not only wastes research investments but also
threatens the safety of clinical volunteers and patients. A design-oriented paradigm for formulation strategy
determination is urgently needed to initiate rational drug development. Herein, we introduce FormulationDT,
the first data-driven and knowledge-guided artificial intelligence (AI) platform for rational formulation strategy
design. Learning from approved drug formulations, FormulationDT devised a comprehensive formulation
strategy design system containing 12 decisions for both oral and injectable administration. Utilizing PU-Decide,
our specialized partially supervised learning framework designed for positive-unlabeled (PU) scenarios, For-
mulationDT developed precise and interpretable classification models for each decision, achieving area under the
receiver operating characteristic curve (ROC_AUC) scores ranging from 0.78 to 0.98, with an average above 0.90.
Incorporating extensive domain knowledge, FormulationDT is now accessible through a user-friendly web
platform (http://formulationdt.computpharm.org/). Moreover, FormulationDT demonstrates its value by
showecasing its application in proteolysis targeting chimeras (PROTACs) and recent drug approvals. Overall, this
study created the first approved drug formulation dataset and tailored the PU-Decide framework to develop a
high-performance, interpretable, and user-friendly Al formulation strategy design platform, which holds promise
for driving risk reduction and efficiency gains across the life cycle of drug discovery and development.

1. Introduction potent compounds leads to the “high affinity trap” [2], the insufficient

attention given to developability has become a hurdle in the pathway to

Drug development remain endeavors characterized by high invest-
ment and substantial risks. The attrition rate of drug candidates entering
Phase I clinical trial reaches as high as 90 % [1], which underscores the
inadequacy in effectively predicting therapeutic and toxic responses at
the preclinical stages. For one thing, the overemphasis of computer-
aided drug design (CADD) and high-throughput drug screening on

drug approval. For another thing, as low-hanging fruits are competi-
tively pursued, the increasing complexity of drug candidates presents
escalating formulation challenges [3]. This necessitates a higher level of
involvement from formulation scientists in the upstream stages of drug
development. In response, some Big Pharma have formed developability
teams [4,5], where formulation scientists play the critical role in
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developability screening, non-clinical and commercial formulation
design, and expediting clinical trial entry (Fig. 1).

For small molecule drugs, solubility crisis stands out as the foremost
developability and formulation challenge [6]. Formulation scientists
have devised non-conventional strategies to formulate poorly water-
soluble molecules. These strategies are based on different solubiliza-
tion principles, including scaling down the solute-solvent difference in
solubility parameters [7], decreasing the lattice energy of the solute [8],
and maintaining supersaturation of the drug (inhibiting precipitation
rate) [8,9]. In contrast, conventional formulations refer to approaches
without a specific solubilization purpose. These include widely used
techniques to adjust dissolution or enhance manufacturability, such as
the addition of wetting agents, micronization of active pharmaceutical
ingredients (APIs), or conversion to salt forms [10]. Formulation stra-
tegies based on different principles are suitable for molecules with
different structures. Unsuitable formulation strategies will result in
wasted research investments, and even pose serious threats to the health
of clinical volunteers or patients [11]. Therefore, as the early stage of
drug development, rational developability evaluation and formulation
strategy design, instead of trial-and-error tests, would be the crucial
initiatives for initiating rational drug development.

By summarizing experience, researchers have compiled rules
[12,13], classification systems [14-16], or expert systems [17-20] for
formulation strategy decision-making for poorly water-soluble drugs.
For example, following the Biopharmaceutics Classification System
(BCS) [21], several extended applications and modifications based on
the BCS concept have been suggested to help druggability assessment or
formulation strategy decisions [14-16]. Drawing from 76 in-house
development cases, Branchu et al. [10] explored tools like statistics,
decision trees, and case-based reasoning to aid in formulation strategy
selection. While the study presents valuable insights, there is potential
for enhancement in data quantity and quality, modeling methods, and
practical applicability. The aforementioned qualitative or semi-
quantitative expert systematic studies on formulation strategy
decision-making are the accumulation of valuable formulation devel-
opment experience; however, the bias from individual developer’s
experience cannot be ignored. Another limitation is that such empirical
decision-making schemes often require in-depth investigation on drug
properties (gastrointestinal solubility, intestinal absorption character-
istics, etc.), which heavily limits the applicability, especially in drug
discovery stages.

Considering the limitations mentioned above and motivated by the
scientific rationale that “structure determines nature and influences
decision-making”, we propose the machine learning solution for
formulation strategy design, aiming to discern the correlation between
the structure and the appropriate formulation routes. Machine learning
research relies primarily on high-quality datasets. Compared to data
derived from the literature or cases in the research and development
(R&D) pipeline, marketed drug data are considered more convincing
because they have been verified by clinical trials, drug regulatory
agencies, and the markets [22]. Moreover, marketed drugs bring
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together the wisdom of outstanding pharmaceutical scientists across the
globe, rather than the limited individual experience. As such, what
lessons can we learn from approved drugs? By analyzing the available
marketed drug information and incorporating our objectives, three
points are concluded in Fig. 2. First, the necessity of solubilization can be
learnt by comparing the conventional formulations with the non-
conventional (solubilization) formulations, which is one of the crite-
rions for the lead compound developability assessment and will be the
first step in formulation strategy design [10]. Further, the feasibility of
salt formation and specific non-conventional formulation strategies can
be learned by generalizing the structural features of corresponding
subsets of drugs. Based on these lessons, multiple classification models
can be constructed to uncover each decision patterns within marketed
drug data, then following by the established of an Al decision-making
system.

A common issue with approved drug data is lacking reliable negative
samples, which constitute positive-unlabeled tasks [23]. For instance,
while we can infer that a drug marketed as a salt form should be suitable
for salt formation, not all drugs marketed as prototypes are incapable of
salt formation, highlighting the absence of reliable negative samples.
Similarly, we cannot assume that a drug not employing a specific non-
conventional strategy is technically unsuitable. For cost reasons, drug
products using a non-conventional strategy can be considered as reliable
positive samples, indicating a necessity for solubilization. However, new
molecular entities (NMEs) are preferentially developed as conventional
formulations to expedite time-to-market or prolong product lifecycle
[24]. In other words, there remains potential to enhance certain con-
ventional formulations with more complex formulation strategies. In
data-driven formulation strategy decision-making, consideration of the
confidence of negative samples is indispensable, i.e., what constitutes an
“unsuitable formulation strategy”, which aligns with Kuentz et al. [25]
in their commentary on the rational selection of bio-enabling oral for-
mulations. Indeed, positive-unlabeled problems of this nature are
prevalent because, in numerous practical scenarios, acquiring reliable
negative data is challenging or costly, or the definition of negative data
remains ambiguous [26]. Positive-unlabeled (PU) learning, a class of
partially supervised machine learning methodologies, has been devised
to address scenarios where only reliable positive data and unlabeled
data (or uncertain negative data) are available [23]. PU learning has
been successfully applied to several biomedical tasks [27-30]. However,
due to labelling deficiencies, most PU learning methods have the
problems of lacking reliable validation and failing to make instanta-
neous predictions.

With the above motivations, the present study developed the first Al
formulation strategy design platform integrating PU learning with
domain knowledge. The main contributions are as follows. (1) The first
Al formulation strategy design system was schemed by learning from the
first collection of approved drug formulation data. (2) To achieve robust
instantaneous prediction, the partially supervised learning framework
PU-Decide was developed for PU learning tasks. (3) The Al formulation
strategy design system was constructed through PU-Decide framework,
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Fig. 2. Three types of lessons learned from approved drugs: the necessity of non-conventional formulation, the feasibility of salt formation, and the feasibility of the
specific non-conventional formulation. For oral drugs, marketed non-conventional formulations include solid dispersions, nanocrystals, lipid-based formulations, and
cyclodextrin inclusions. Common solubilization strategies applied to marketed injectable drugs include using organic solvents/co-solvents to adjust the solvent’s
solvation-related properties, dispersing the drug in the hydrophobic regions of surfactant micelles or liposomes, and the formation of cyclodextrin inclusions.

with total 12 decision tasks achieving an average area under the receiver
operating characteristic curve above 90 %. (4) Interpretable machine
learning models for formulation strategy decisions provide new insights
for pharmaceutical research. (5) The Al system was deployed into a user-
friendly website to benefit pharmaceutical scientists. Moreover, the
established platform was applied on proteolysis targeting chimeras
(PROTACS) and recently drug approvals, showcasing its potential in
enhancing efficiency, reducing costs, and elevating drug quality across
the life cycle of drug discovery and development.

2. Method
2.1. Data preparation

Initially, marketed non-conventional formulations were compiled
comprehensively and accurately from literature sources and public re-
ports. Subsequently, drug molecules approved for administration via
oral and injectable routes were summarized from the Orange Book
database of the U.S. FDA. The non-conventional formulations were
excluded from the approved drug dataset to form the conventional
formulation data. Additionally, information regarding whether con-
ventional formulations were marketed as prototypes or salts was iden-
tified through the Orange Book.

To enable end-to-end prediction, calculated RDKit descriptors [31]
and predicted dissociation constants (pKa) [32] are employed to
represent drug molecules. The RDKit program was employed to calcu-
late the descriptors for characterizing drug molecule. To facilitate
broader model applicability and enable end-to-end decision-making, we
employed the methodology proposed by Pan et al. [32] to predict the
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pKa values of input molecules. The predicted pKa data is encoded into
four features that describe whether the molecule possesses acidic or
basic ionizable groups, as well as the dissociation constants of the
strongest acidic and basic ionizable groups in the molecule.

2.2. Feature engineering

For each dataset, feature engineering was conducted to minimize
redundant features and enhance model accuracy and efficiency. Given
the absence of reliable negative labels in the original dataset, feature
selection methods based on model performance are not applicable. So,
filtering methods are employed. Specifically, the following steps were
taken for feature engineering:

(1) Calculating the Pearson’s correlation coefficient between fea-
tures and retain only one of the features if its correlation coeffi-
cient exceeds 0.8.

(2) Eliminating features that do not show significant differences
across target categories using the rank-sum test (Mann-Whitney U
test) for binary targets, with a significance level of « = 0.01.

(3) Standardizing the data using the StandardScaler method from
Scikit-learn library [33]. This standardization aimed to ensure
that data for different features had the same scale (following a
standard normal distribution with a mean of 0 and a standard
deviation of 1). This helps mitigate discrepancies in the scales of
various features, improves model convergence, and enhances
model stability, particularly for algorithms sensitive to feature
scaling.
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2.3. The structure of PU-Decide framework

To handle the positive-unlabeled data and provide robust online
prediction, we designed a PU learning farmwork named PU-Decide on
the basis of the bootstrap aggregating scheme proposed by Mordelet
et al. [34]. PU-Decide consists of three components (Fig. 3). The first and
core component PU bagging creates multiple sub-classifiers through
bootstrap sampling to minimize the uncertainty introduced by unlabeled
samples. As depicted in Fig. 3a, the PU bagging component includes the
following 4 steps:

(1) Randomly selecting a proportion of unlabeled samples as nega-
tive samples, forming a balanced training subset with positive
samples, and constructing a sub-classifier.

(2) Applying the constructed sub-classifier to each unlabeled sample
out of the bootstrap samples and recording the probability of
being classified as a positive sample.

(3) Repeating the above two steps, with the mean value of the
probabilities obtained in each iteration serving as the final posi-
tive score.

(4) Labeling unlabeled samples according to a positive score
threshold.

To broaden adaptability across diverse data structures, for the base
classifier, four learning algorithms (decision tree, support vector ma-
chine, k-nearest neighbors, and logistic regression) employing distinct
hypothesis functions will be compared.

To tackle the challenge of validating PU bagging caused by the
absence of true labels, we devised the second component for base clas-
sifier selection and labeling threshold determination to ensure the reli-
ability of label recovery. As illustrated in Fig. 3b, in each bagging round,
several positive samples are randomly selected into the unlabeled data
as validation points. After PU bagging, each validation point gets an
average positive score. Moving the threshold from 1 to 0, the corre-
sponding recall of the validation points can be obtained. Additionally, at
each threshold, the proportion of unlabeled data marked as positive can
be determined. To balance the true positive and false positive samples in
labeling unlabeled samples, we define the RP value:

RP value = Recall of validation points — Positive rate of unlabeled data
(€Y

Collectively, comparing the magnitude of the maximum RP values of
various base classifiers can be utilized to select the best base classifier,
and by identifying the threshold where the maximum RP value occurs,
the optimal threshold can be determined. The detailed explanation was
provided in Supplementary material 1.

Lastly, to provide robust and online prediction, binary classification
models are trained for each task. Eight machine learning algorithms
based on different hypothesis functions are employed for constructing
classification models, including Decision Tree (DT), Random Forest
(RF), k-Nearest Neighbors (KNN), Naive Bayes (nBayes), Light Gradient
Boosting Machine (LightGBM), Logistic Regression (LR), Support Vector
Machine (SVM), and Neural Networks (NN). These learning algorithms
cover a spectrum of learning paradigms, including rule-based learning,
ensemble learning, instance-based learning, probability models, linear
models, kernel-based methods, and artificial neural networks.

2.4. Machine learning model development and evaluation

We used Scikit-learn library [33] in Python to build machine
learning models, including DT, RF, KNN, nBayes, LightGBM, LR, SVM,
and NN (Multilayer perceptron from Scikit-learn). To address data
imbalance, the Synthetic Minority Oversampling Technique (SMOTE)
[35] was applied in training set. Bayesian optimization was employed to
explore the hyperparameter space [36], seeking the optimal hyper-
parameter combinations for each algorithm. In each Bayesian
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optimization, the initial number of sampling points is set to 10, and the
total number of optimization iterations is set to 200. For each task, the 5-
fold splitting strategy was used to acquire five non-overlapping subsets,
each serving as a test subset for 5 independent model training, valida-
tion, and testing processes. Models were evaluated with multiple met-
rics, including accuracy, precision, recall, F1 score, and MCC as
implemented in Scikit-learn. The mean and standard deviation of the
models’ performance on the test subsets are recorded for the evaluation
and comparison of model generalization capability. The SHAP library
[37] was used to interpret the features influencing each model’s de-
cisions. The rank-sum test (Mann-Whitney U test) was conducted with
the “scipy.stats” module in Python.

2.5. The deployment of the artificial intelligence platform

FormulationDT is designed to offer a robust computing environment
for real-time calculations to multiple users. The underlying hardware of
the platform utilizes Alibaba Cloud’s Elastic Compute Service, with
Ubuntu as the server operating system. The platform is developed using
the Python programming language, making full use of its mature com-
munity and rich Al and data processing libraries, such as Numpy [38],
Pandas [39], and Scikit-learn [33]. For handling web requests and
resource access, we employ Nginx (https://www.nginx.com/) to proxy
requests and uWSGI (https://pypi.org/project/uWSGI/) to communi-
cate between Nginx and the Python program. Built on the Django
(https://www.djangoproject.com/) framework, the platform ensures a
clear separation between business data (models) and user interface
(views), facilitating convenient upgrades and maintenance. MySQL (htt
ps://www.mysql.com/) is employed as the widely used relational
database engine for data storage. In terms of the user interface, we
adopted asynchronous JavaScript (https://www.javascript.com/) and
XML (AJAX) for asynchronous data retrieval, and leveraged CSS
(cascading style sheets) and JavaScript to construct a cross-platform
user interface. This technological combination enables FormulationDT
to efficiently store and format models within the established framework,
providing outstanding predictive services. The overall platform devel-
opment aims to ensure high-performance computing, laying a solid
foundation for future resource-based application programming
interfaces.

3. Result

3.1. Approved drug data and Al formulation strategy decision system
design

To learn from approved drugs, a formulation strategy dataset
comprising 988 orally administered drugs and 448 injectable drugs
approved by the U.S. FDA as of 2022 was compiled. The data distribu-
tion is depicted in Fig. 4b. In the conventional formulation category, oral
prototype drugs constitute a slight majority (55.2 %), whereas in
injectable drugs, 62.3 % are in salt form. The frequency of non-
conventional techniques in oral (13.8 %) and injectable drugs (14.7
%) is close. Among the non-conventional formulations, oral drugs are
predominantly formulated using lipid-based formulations or solid
dispersion techniques. The more sophisticated nanocrystal techniques
were used in fewer than 20 marketed products. There are 30 oral
cyclodextrin inclusions marketed, nearly twice as many as those
administered by injection. For injectable drugs, the number of marketed
products for four non-conventional technologies ranged from 14 to 27.
There are drugs that overlap in terms of non-conventional technologies.
For instance, the hypolipidemic drug Fenofibrate has been successfully
developed as a solid dispersion (Lipanthyl Supra, Lipidil EZ), nanocrystal
(Tricor, Lipidil Micro), and lipid-based formulation (Triglide, Antara). The
overlap information is indicated in the Venn plot in Fig. 4b.

Gleaning insights from approved drugs and incorporating the
expertise of formulation scientists, the AI formulation strategy decision
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system was designed as Fig. 5. Decision 1 pertains to the formulatability
decision about whether the molecule necessitates adopting a non-
conventional solubilization strategy. Utilizing Decision 1, targeted
screening or designing lead compounds with high formulatability in
drug discovery process will reduce R&D and production expenses.
Simultaneously, accurately identifying the solubility challenges and
promptly implementing solubilization strategies are crucial for miti-
gating drug development risks [40]. In conventional formulations,
converting a prototype drug into a salt form is a widely employed and
relatively low-cost chemical modification strategy. Salt-formation en-
hances the polarity of drug molecules and improves their interaction
with the polar solvent, thereby increasing solubility. However, not all
molecules can undergo salt formation, depending on factors such as
ionizable groups, crystallizability, and stability of the target salts [41].
Assessing the feasibility of salt formation would be the subsequent
practical decision (Decision 2a). Non-conventional formulation strate-
gies, grounded in various solubilization principles, possess distinct ad-
vantages and disadvantages, with their applicability to different types of
drug candidates varying accordingly. Hence, implementing Decision 2b
will facilitate the recommendation of feasible non-conventional for-
mulations, thereby enhancing the efficiency of both non-clinical and
clinical formulation development. Further, the whole formulation
strategy decision system can be decomposed into 12 machine learning
tasks as shown in Table 1.

3.2. Processing positive-unlabeled datasets with PU-Decide

To select the base classifiers for each task, we first compared the
maximum RP values obtained from PU bagging with 4 learning algo-
rithms, DT, SVM, KNN, and LR, for the 12 tasks (Fig. 6a). Overall, the
maximum RP values for all tasks lie between 0.35 and 0.68. For different
tasks, three algorithms, except KNN, exhibit their respective strengths.
DT and SVM have advantages in handling non-linear relationships in
high-dimensional spaces, whereas LR is often suitable for linearly
divisible or approximately linearly divisible problems. The optimal
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performance of DT, SVM, and LR in four, three, and five tasks, respec-
tively, underscores the varied data characteristics and correlation pat-
terns within different tasks. This emphasizes careful selections of base
classifiers. KNN typically excels in local pattern recognition but may
struggle with global generalization in high-dimensional spaces. Addi-
tionally, KNN is more sensitive to the choice of the hyperparameter k
value [42], and as a base classifier without a tuning process, this char-
acteristic somewhat limits its application.

To determine the optimal threshold, the recall curves of the valida-
tion points and the RP values for each task across different thresholds
(the screening step is 0.01) were depicted (Fig. 6b), employing the
optimal base classifiers. As the threshold transitions from 1 to 0, the RP
values exhibit a trend of increasing and then decreasing, aligning well
with the theoretical inference (Fig. S1). By locating the maximum RP
value, the optimal thresholds for each task were determined. As shown
in Fig. 6¢, the optimal thresholds are distributed from 0.46 to 0.73. The
threshold screening compensates for the lack of reliable negative data
and inadequate hyperparameter optimization of the base classifiers. At
the corresponding optimal thresholds, the recall distribution of the
validation points ranges from 0.56 to 0.93 (Fig. 6d), averaging at 0.73.
This highlights the effectiveness of the base classifier in identifying
positive samples, even under data and training constraints.

The determined base classifiers and thresholds were chosen to
perform PU bagging on the 12 datasets, respectively. The status of the
original and relabeled datasets for all 12 tasks is shown in Table 2.
Taking Task_ol as an example, 21.36 % (182 of 852) of the unlabeled
data were identified as positive samples in PU bagging using 0.56 as the
decision threshold. This finding suggests that approximately 20 % of
orally administered drugs, traditionally formulated as conventional
formulations, offer potential for the development of modified new drugs
using bio-enabling technology, thereby enhancing safety and efficacy. In
salt formation decisions, the PU bagging results showed that for oral and
injectable drugs, 22.13 % and 45.83 % of the prototypes were techni-
cally feasible to be developed into salt forms, respectively. Across the
eight Decision 2b tasks concerning the feasibility of specific non-
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solubilization strategy. Decision 2a involves evaluating the feasibility of salt formation. Decision 2b to recommend feasible non-conventional formulations. The
positive-unlabeled learning framework, PU-Decide, will be utilized for each decision. Various computational frameworks, tools, and libraries will be utilized to build

the user-friendly Al platform FormulationDT.

conventional formulation strategies, the positivity rate for unlabeled
samples ranged from 3 % to 29 %. Such findings are promising to pro-
vide inspiration for the development of modified new drugs.

3.3. Model construction and evaluation

To more effectively assess machine learning model generalization
ability, for each label-recovered dataset, a 5-fold data splitting approach
was employed. Each of these folds was utilized as a test subset (20 %),
while the remaining data was divided into training and validation
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subsets via random stratified sampling (Fig. 3a). The model general-
ization ability was evaluated by averaging the model performance ob-
tained from five entirely independent model training, validation, and
testing processes. Model performance comparison is shown in Supple-
mentary material 2. Overall, SVM, NN, and the tree-based ensemble
learning algorithms, RF and LightGBM, exhibit superior performance.
Tree-based ensemble learning algorithms possess the capability for
nonlinear modeling, resistance to overfitting, and relative robustness to
noise and outliers. Additionally, these algorithms can handle imbal-
anced classes and mixed features, often exhibiting excellent
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Table 1
The definition and description of the involving machine learning tasks.
Administration Tasks Task description Models
route
Task ol Necessity of bt?mg formulate('i as del ol
a non-conventional formulation
Task 02a Feasibility of being formulated Model 02a
as salt form
Task 02bs Feasﬂ?lht)'r of beimg formulated Model 02bs
as solid dispersion
Oral Feasibility of being formulated
Task_o2bn casibliity of being formuate Model_o2bn
as nanocrystal
Task 02bl Fea§11?111ty of being forr‘nulated Model 02bl
as lipid-based formulations
Task_o2be Feasibility of 'be.mg fo.rmulated Model_o2be
as cyclodextrin inclusions
Task il Necessity of -belng formula?ed as del il
non-conventional formulation
Task i2a Feasibility of being formulated Model i2a
as salt form
Task_i2bo Fgaﬂblhty f)f being formulated Model i2bo
. with organic solvent/co-solvent
Injectable Feasibility of being formulated
Task_i2bs y . 8 Model_i2bs
as surfactant micelles
Task_i2bl Fea.51b1hty of being formulated Model i2bl
as liposomal formulation
Task i2be Feasibility of being formulated Model i2be

as cyclodextrin inclusion

performance in classification tasks with small datasets. In contrast, DT
tends to overfit with limited samples and is susceptible to variations in
input data [43]. The nBayes performed the poorest in this study. Naive
Bayes algorithms are significantly influenced by prior probabilities and
may struggle to accurately estimate the independence between features
in the presence of limited data points, potentially leading to incorrect
assumptions about the true data distribution [44]. The detailed perfor-
mances of these models are presented in Table 3. The average perfor-
mance metrics are shown in Fig. 7a. Overall, the average accuracy,
recall, precision, and ROC_AUC of the 12 tasks are 86.4 %, 82.2 %, 85.9
%, and 91.2 %, respectively, which demonstrates a balanced and satis-
factory classification performance of the developed models. Looking at
the specifics, there is still room for improvement in the performance of
feasibility predictions for three specific non-conventional formulations:
lipid-based formulation, surfactant micelles, and liposomal formulation.
This might be attributed to the fact that the purpose of these strategies is
mainly, but not limited to, drug solubilization. For instance, some oral
drugs formulated as lipid-based formulations aim to enhance the sta-
bility of APIs [45]. Such objective limitations may impact the quality of
available data and subsequently influence model performance.

To demonstrate the necessity and effectiveness of employing a PU
learning strategy to handle positive-unlabeled data, we conducted
ablation experiments. Fig. 7b compares the MCC (Matthews Correlation
Coefficient) metrics of classification models constructed using the same
modeling process after three different data processing methods. For each
task, the PU learning strategy adopted in this study significantly
improved classification performance compared to modeling with raw
data. Additionally, we randomly designated a certain number of samples
(equal to the number of known positive samples) as positive samples and
applied the same PU-Decide framework for PU learning on this artifi-
cially labeled dataset. The results indicate that such a random dataset
does not lead to robust improvements in classification performance after
PU learning. This also demonstrates that PU learning relies on the cor-
rect definition of the positive-unlabeled problem.

3.4. Model interpretation

To enhance user trust and gain insights from models, statistics and
SHAP (Shapley Additive Explanations) analysis [37] were employed for
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model interpretation. To understand the overall impact of molecule
features on formulation strategy design, we conducted rank-sum tests on
12 tasks, identifying top 20 molecule features with the most significant
average impact. Subsequently, these key features were clustered ac-
cording to their correlations, resulting in Fig. 8a, which shows that six
main feature categories influence formulation strategy design: molecu-
lar complexity, aromaticity, basic ionization state, carboxyl group, lac-
tones, and the proportion of tertiary carbons. For decision-making
specific to each task, we performed SHAP analysis, which elucidates
how the model generates predictions for each sample by assigning
contribution values to individual features. Fig. 8b illustrates the feature
importance ranking determining the necessity of non-conventional
formulation for oral drugs. Prominent features include molecular ioni-
zation state, electronegativity, hydrophobicity, and substructural char-
acteristics. A higher basic dissociation constant (indicating stronger
basicity) negatively contributes to the necessity for solubilization, which
is logical since basic molecules are more likely to ionize in the acidic or
mildly basic gastrointestinal environment, enhancing their interaction
with polar solvents and increasing apparent solubility [46]. Conversely,
highly ionizable molecules can improve solubility through salt forma-
tion, reducing the need for bio-enabling formulations. Fig. 8c depicts the
interaction effect of lipophilicity and basic groups on oral molecule
solubilization necessity. The model quantified the cutoff value of Mol-
LogP’s solubilization necessity contribution as 2.3. For molecules
without basic ionizable groups, lipophilicity will impose a relatively
larger solubilization necessity contribution. Fig. 8d compares the deci-
sion basis for salt formation feasibility of oral and injectable drugs, using
a heatmap to present clusters of samples influenced by different feature
combinations. For oral drugs, the ionization constant of the basic groups
significantly determines the feasibility of salt formation, as it directly
influences the ionization state of drugs in the gastrointestinal tract,
affecting absorption rate and extent. For injectable drugs, the factors
influencing salt formation feasibility are more related to the combina-
tion of molecular electrostatic characteristics. Fig. 8e quantifies the
impact of molecular mass on the choice between two solubilization
strategies. For solid dispersions, a molecular mass above 430 provides a
positive contribution. Notably, while solid dispersions are suitable for
molecules with relatively large molecular mass, these molecules typi-
cally exhibit lower complexity (characterized by the lower HallKier-
Alpha index [47]), meaning they generally possess fewer ring structures,
branches, and complex functional groups. For cyclodextrin inclusion
complexes, a relative molecular mass above 420 and poor drug-likeness
(characterized by the lower QED index [13]) contribute negatively
because of the limited cavity volume of cyclodextrins. Fig. 8f illustrates
the quantitative impact of FractionCSP3 (the proportion of tertiary
carbons in the carbon skeleton) on the choice between injectable
cyclodextrin inclusions and surfactant micelles. Poorly soluble mole-
cules with low FractionCSP3, often termed “brick-dust” [48], can benefit
from cyclodextrin inclusion to prevent aggregation and crystallization,
while insoluble molecules with high FractionCSP3, referred to as
“grease-ball”, can be stabilized within the hydrophobic regions of mi-
celles. Conversely, molecules with high FractionCSP3 may have more
three-dimensional structures that hinder stable binding with cyclodex-
trin cavities [49]. Fig. 8g presents the decision-making process of the
solubilization strategy for Fenofibrate, a poorly soluble drug that has
been successfully marketed as lipid-based formulations, nanocrystals,
and solid dispersions. Model interpretability analysis clearly demon-
strates the key molecular features that recommend or dissuade certain
formulation strategies. For Fenofibrate, excessive lipophilicity is a pri-
mary reason for its unsuitability for cyclodextrin inclusion, as it would
lead to overly strong binding with the cyclodextrin cavity, hindering
dissociation and absorption at the absorption window. Different tasks
reveal distinct molecular features impacting decisions, as shown in
Fig. S2. Some results align with empirical knowledge, while others
provide new insights for formulation scientists. By elucidating molecular
features related to drug formulation performance, pharmaceutical
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Fig. 6. Positive-unlabeled bagging results. a. The maximum RP value of 4 base classifiers for each task. The maximum RP values of the best base classifiers are
bolded. b. The curve of the recall of validation points (blue lines) and the RP value (orange lines) with the best base classifier for each task. The dashed line indicates
the optimal threshold, along with the corresponding recall of validation points and maximum RP values at that threshold. c. The distribution of optimal thresholds
with the best classifiers. The dashed line indicates the threshold 0.5. d. The recall of validation points and the maximum RP value with the best base classifier and
optimal threshold for each task. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2

Overview of the data volume before and after positive-unlabeled bagging for 12 tasks.

Journal of Controlled Release 378 (2025) 619-636

Task Original dataset Dataset after PU bagging
Positive Unlabeled Total Recognized positive Positive rate of unlabeled Positive Negative
samples samples samples samples samples samples samples
Task_ol 136 852 988 182 21.36 % 318 670
Task_o2a 382 470 852 104 22.13 % 486 366
Task_o2bs 48 88 136 22 25.00 % 70 66
Task_o2bn 16 120 136 35 28.93 % 51 85
Task_o2bl 55 81 136 3 3.70 % 58 78
Task_o2bc 30 106 136 22 20.75 % 52 84
Task_il 66 382 448 134 35.08 % 200 248
Task_i2a 238 144 382 66 45.83 % 304 78
Task_i2bo 22 44 66 20.45 % 31 35
Task_i2bs 27 39 66 11 28.21 % 38 28
Task_i2bl 14 52 66 4 7.69 % 18 48
Task_i2bc 17 49 66 6 12.24 % 23 43
Table 3
Detailed performance of the optimal models for 12 tasks (mean + standard deviation, 5 independent tests).
Model Accuracy Precision Recall ROC_AUC F1 score MCC
Model ol 0.8927 £ 0.0108 0.8429 + 0.0223 0.8208 £ 0.0447 0.9348 + 0.0161 0.8309 £ 0.0204 0.7533 £ 0.0261
Model 02a 0.8686 + 0.0306 0.9035 £ 0.0426 0.8643 + 0.0537 0.9432 + 0.0303 0.8821 + 0.0286 0.7375 £+ 0.0619
Model_o2bs 0.9193 £ 0.0399 0.9846 + 0.0344 0.8571 + 0.0714 0.9768 + 0.0288 0.9150 + 0.0440 0.8482 + 0.0740
Model_o2bn 0.9259 + 0.0454 0.9022 + 0.0606 0.9000 + 0.1000 0.9665 + 0.0218 0.8987 + 0.0648 0.8434 £ 0.0986
Model _o02bl 0.7352 £ 0.0961 0.7115 £+ 0.1156 0.6394 + 0.2160 0.7789 £+ 0.1040 0.6608 £ 0.1423 0.4605 + 0.2085
Model o2bc 0.8754 + 0.0659 0.8402 + 0.1320 0.8691 + 0.1368 0.9191 + 0.0584 0.8423 + 0.0851 0.7564 + 0.1233
Model i1 0.8528 + 0.0392 0.8444 + 0.0577 0.8250 + 0.0586 0.9245 + 0.0341 0.8333 £ 0.0439 0.7035 £ 0.0799
Model i2a 0.8899 + 0.0306 0.9278 + 0.0438 0.9375 £ 0.0244 0.9228 + 0.0522 0.9317 £+ 0.0163 0.6495 £ 0.0140
Model_i2bo 0.8945 + 0.0671 0.9500 + 0.1118 0.8429 + 0.1558 0.9075 + 0.0610 0.8799 + 0.0780 0.8103 + 0.1187
Model_i2bs 0.7857 + 0.1022 0.8556 + 0.0843 0.7679 + 0.1651 0.8674 + 0.1697 0.8012 + 0.0988 0.5926 + 0.1977
Model_i2bl 0.8615 £ 0.0843 0.7833 £+ 0.2173 0.7167 + 0.1826 0.8478 + 0.1021 0.7310 £+ 0.1631 0.6542 + 0.2120
Model_i2bc 0.8505 + 0.0853 0.7928 + 0.1308 0.7800 + 0.2465 0.9544 + 0.0435 0.7699 + 0.1614 0.6767 + 0.2074
a 0.8217 (0.0803) 0.8592 (0.0773) b TgaSk_m

Recall Precision

F1 score
0.8325 (0.0791)

Accuracy
0.8642 (0.0520)

ROC-AUC
0.9117 (0.0554)

MCC
0.7067 (0.1114)
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Fig. 7. Average model performance and model comparison. a. Average performance of the top models across 12 tasks. The shading areas and the values in pa-
rentheses denote the standard deviation. b. Spider plot comparing MCC metrics across 12 tasks using three different data processing methods. Gray: PU learning
method adopted in this research; orange: no PU learning; purple: PU learning with randomly selected positive samples. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

scientists can also optimize drug design by adjusting molecular struc-
tures during early development stages to mitigate certain feature im-
pacts. Furthermore, SHAP analysis can assess interactions between
different descriptors that might produce nonlinear effects in complex
biological systems. These profound insights will facilitate more accurate
predictions for the in vivo fate of drugs.

3.5. Web-platform construction and function display

To broaden the application scenarios and reduce the application
barrier of the developed Al system, we deployed it as a user-friendly web
platform named FormulationDT. With FormulationDT, users only need
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to input drug names or the structure of candidate drugs to promptly
receive recommendations for suitable formulation strategies. The user
interface of FormulationDT comprises two primary modules. The
“Webserver” module serves as the portal for accessing and utilizing
FormulationDT, while the “Documentation” module offers information
pertaining to the dataset and model performance. Users simply need to
type the name or input the structure of the query molecule using either
Simplified Molecular Input Line Entry System (SMILES) [50] notation or
by directly drawing it. FormulationDT will then intelligently perform
the prediction and analysis process. The format conversion function of
ChemDes [51] is provided to facilitate the user to obtain the SMILES of
the molecule. Fig. 9 displays the snapshots of the FormulationDT user
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Fig. 8. Model interpretation and analysis. a. Clustered correlation heatmap of top 20 key features with the most significant average impact across the 12 tasks. The
green and red colour respectively indicates positive and negative correlation. b. Beeswarm plot of the contributions of top 10 important features for Model_o1. Blue
dots indicate instances with lower feature values, while red dots represent higher values. The horizontal coordinate for each instance reflects the influence of the
feature value on model decision, with positive and negative values indicating positive and negative contribution to the positive model decision, respectively. The
absolute magnitude of the coordinate indicates the quantitative contribution. c. Interaction dependence plot of the influence of MolLogP and basic group existance on
Model ol. Each point represents a sample. The colour of the point indicates the presence (red) or absence (blue) of basic ionizable groups. The horizontal coordinate
represents the actual MolLogP value of the sample, while the y-axis represents the contribution of this sample’s MolLogP value to the model’s positive prediction. The
value greater or less than O respectively indicates a positive or negative contribution. d. Heatmap plots for Model 02a and Model_i2a. The top section is the model’s
output, clustered and arranged based on similar output values obtained from different feature combinations. The heatmap below represents the influence of feature
combinations, with red and blue respectively indicating positive and negative contributions of the feature to the model’s positive output. e. Interaction dependance
plot showing the interaction of MolWt with HallKierAlpha and QED index to influence the prediction of Model_o2bs and Model_o2bc, respectively. f. Dependance plot
showing how FractionCSP3 influence the prediction of Model_i2bc and Model_i2bs. The interpretation of subplot e and i are similar to subplot c. g. The force plots of
four oral bio-enabling formulation feasibility analysis for Fonofibrate. The length of the colour blocks quantifies the contribution of the features to the model’s
prediction, with red and blue representing positive and negative contributions to the model’s positive output, respectively. The bold numbers indicate the models’
predicted positive outcome probability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

interface. The output content consists of three components. First, it classification models, so it is possible for no viable strategies to be
presents the calculated information and characteristics of the input selected. In this case, alternative solubilization strategies not included in
molecule. Second, it visualizes the decision-making process for formu- this study can be considered for the queried molecule. Lastly, For-
lation strategy. In this visualization, the formulation strategy recom- mulationDT integrates the outputs of the AI system with domian
mended by the Al system is depicted in colour, with the number of knowledge to provide interpretation of the decision results, which en-
pentagrams representing the level of recommendation which is derived compasses various application scenarios.

from the probability belonging to a specific class predicted by machine The core functionality of FormulationDT is to decide on the appro-
learning models. Note that Task 2b consists of multiple binary priate commercial formulation strategy according to the input
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formulatability index is to 1 means the molecule is less difficult to be formulated.

+ Simple solutions or suspensions can be tried. If consistent exposure cannot be achieved, the following solubilization strategies can be used:

+  Solubilization strategies are recommended for the development of high-exposure toxicity study formulations. Feasible solubilization strategies
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Fig. 9. Snapshots of the user interface and functionality display of FormulationDT. Users can type the name or input the structure of the query molecule using either
Simplified Molecular Input Line Entry System (SMILES) notation or by directly drawing it. The output of FormulationDT will include the basic information of the
query molecule, the formulation strategy design results for both oral and injectable administration. Moreover, the detailed interpretation for the design result will be
provided to enable the application of FormulationDT in drug discovery, preclinical formulation design, expediting commercial formulations into clinical trials,
feasible commercial formulation strategy decision, and identifying chance for modified new drugs.

molecules. Based on such core function and the well-developed result
interpretation, FormulationDT can serve as a formulation expert to exert
influence across various stages of drug discovery. First, FormulationDT
provides a formulatability index for drug discovery. For oral and
injectable administration, the formulatability index equals the proba-
bility that the input molecule is negative (indicating that non-
conventional formulation strategies are not required) predicted by
Model ol or Model il, respectively. The formulatability index ranges
from 0 to 1, with values closer to 1 indicating lower difficulty in
formulating the molecule. The formulatability index can be initially
divided into three equal ranges indicating low, medium, and high for-
mulatability. This can serve as one of the developability metrics for
screening, generating, or designing drug molecules to control the cost
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and risk of subsequent drug development stages. Second, in the pre-
clinical stage, if a simple solution or suspension fails to meet the
formulation requirements, combining the core functionality of For-
mulationDT and the special requirements of preclinical formulations,
the established AI system can also recommend feasible non-
conventional formulations, thus facilitating the design of formulations
with consistent and reproducible exposure for PK/PD studies, as well as
formulations achieving high exposure for toxicity studies. Third, For-
mulationDT can assist formulation scientists in advancing suitable
commercial formulations into clinical trials with minimal investment,
thereby decreasing reliance on Fit-for-purpose (FFP) formulations. Such
endeavors have been noted to significantly abbreviate the duration from
Investigational New Drug (IND) to New Drug Application (NDA) [16]. In
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early clinical studies such as First in human study, Proof of concept
study, etc., the FFP approach may be adopted to fulfill requirements by
employing simple formulations, thereby avoiding excessive investment
in formulation development during the high-risk clinical trial phase.
However, the drawbacks of FFP approaches are evident; formulations
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commercial demands necessitate formulation modifications later in
development. These changes can potentially impact the pharmacoki-
netics of the initial FFP formulation, resulting in clinical downtime and
necessitating bridging in vivo studies, thereby incurring additional risk
and investment. Forth, FormulationDT can be employed for the retro-
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opportunities for developing formulation optimization-based modified
new drugs. This is essential for improving drug efficacy, safety, and
adherence, while also addressing unmet clinical and market needs.

3.6. Applications of FormulationDT

3.6.1. Prospective study facilitating PROTACs development

To demonstrate the prospective guidance provided by For-
mulationDT for new molecule formulation development, we applied
FormulationDT to oral formulation strategy design for 3270 PROTACs
curated in PROTAC-DB [52,53]. PROTACs induce selective degradation
of target proteins through the ubiquitin-proteasome system, represent-
ing an innovative drug discovery strategy that has garnered widespread
attention. Despite significant progress in the past decade, designing
ideal PROTACs remains a substantial challenge. To date, several PRO-
TACs are in clinical stages, but none have been approved. In Decision 1,
FormulationDT predicts that non-conventional formulation is necessary
for over 85 % PROTACs. PROTACs are heterobifunctional molecules
consisting of a small molecule targeting the protein of interest, a small
molecule recruiting an E3 ligase, and a linker connecting these two
moieties. The high molecular weight limits their solubility, perme-
ability, and other drug-like properties. Notably, differences in the
average positive scores of PROTACs composed of different E3 ligase li-
gands were observed. As depicted at the top of Fig. 10, a total of 2047
CRBN-targeted PROTACs exhibited lower average positive scores
compared to VHL-targeted PROTAC s, indicating that the CRBN-targeted
PROTACs tend to have better formulatability. Currently most of the
PROTACs entering clinical trials are CRBN-targeted PROTACs, partly
due to the enhanced druggability attributed to the relatively smaller
molecular weight of CRBN E3 ligase ligands [54]. Regarding Decision
2a, the models deemed the majority of PROTAC molecules feasible for
salt formation. This suggests to pharmaceutical scientists that, for mol-
ecules with moderate solubility enhancement needs, prioritizing salt
formation could be advantageous. All molecules were considered suit-
able for development as solid dispersions which is exactly the commonly
used bio-enabling strategy for PROTACs [55]. Nanocrystals and lipid-
based formulations exhibit structural preferences in PROTAC applica-
tions. With FormulationDT, the feasibility of developing PROTACs into
nanocrystals or lipid-based formulations can be quantitatively assessed.
Regarding cyclodextrin inclusion technology, the model indicates that
most PROTACs are unsuitable. This is because PROTACs consist of three
linked components, resulting in elongated molecular shapes (e.g.,
molecule A) that do not fit well within the cavities of commonly used
cyclodextrins [56]. However, there are exceptions; molecules with
relatively smaller molecular weight and length, such as molecule B, are
considered to have potential for development as cyclodextrin com-
plexes. FormulationDT showecases its ability to make comprehensive
formulation decisions in bulk and swiftly for any drug candidate with
known structure, which will greatly facilitate drug development through
rational formulation strategy selection and has the potential to guide the
screening and design of drug molecules.

3.6.2. Identifying modification opportunities for approved drugs

Through retrospectively evaluating marketed molecules, For-
mulationDT can also identify opportunities for modified new drugs,
which are of vital importance to enhance the efficacy, safety, and
adherence of drugs and to fill unmet clinical gaps [57]. In 2023, the U.S.
FDA approved 29 small molecule NMEs, with 23 of them being orally
administered. Among these oral molecules, 7 were marketed as salt
forms. The results of FormulationDT’s batch predictions on such orally
administered NMEs are presented in Fig. 11. For the formulatability
assessment in Decision 1, FormulationDT predicted that 10 out of the 23
orally administered NMEs required improvements in delivery efficiency
through non-conventional formulation strategies (the left side of
Fig. 11). Suitable solubilization strategies were also provided by For-
mulationDT, with different technically recommended priorities. With
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the intelligent decisions of FormulationDT, users can quickly follow up
and efficiently conduct the development of modified new drugs in
conjunction with their respective non-technical considerations. For the
remaining 13 molecules with high formulatability, FormulationDT’s salt
formation feasibility decision concluded that 8 of them could be
formulated as salt forms (the right side of Fig. 11). All 7 molecules
currently marketed in salt form were successfully identified by For-
mulationDT as feasible for formulation as salt, highlighting For-
mulationDT’s high recall in predicting salt formation feasibility.
Capivasertib, currently marketed as a prototype, was assigned a salt-
forming feasibility score of up to 0.98 by FormulationDT. This sug-
gests that drug developers may explore the clinical or manufacturing
advantages of Capivasertib’s salt form to uncover opportunities for
modified new drugs. For the remaining 5 molecules determined by
FormulationDT as not requiring being formulated as non-conventional
formulations and lacking salt formation feasibility, efforts for modified
new drugs should not be wasted in the above manner. Possible alter-
native approaches can be explored, such as optimizing manufacturing
processes or making slight modifications to the molecular structure to
enhance stability or reduce toxicity.

4. Discussion

In the era of Pharma 4.0, significant progress has been made in AI-
driven drug design [58,59] and rational formulation design [60-64].
However, as the early stage of drug development, formulation strategy
decisions still rely on costly trial-and-error tests or limited experience.
Experience is helpful, provided it is explicit and robust. Over the past
century of modern pharmacy, thousands of approved drugs have accu-
mulated the wisdom from countless scientists worldwide. Quantifying,
instrumenting, and organically integrating these valuable lessons into an
Al decision-making platform is the motivation and goals of the present
work. To begin with, the formulation information of small molecule
drugs approved by the U.S. FDA was manually collected, constituting
what is, to our knowledge, the first systematic dataset on this topic.
Following this, based on the scientific principle that structure de-
termines nature and influences decision-making, we developed the PU-
Decide framework to address the problem of missing reliable negative
samples in marketed drug data to establish correlations between mole-
cule structure and formulation decisions. The average ROC_AUC score of
the best models exceeded 0.91 for total 12 classification tasks, ranging
from 0.78 to 0.98. Lastly, integrating data-driven machine learning
models with domain knowledge, the first Al formulation strategy
decision-making platform was successfully developed, which is pre-
sented in a user-friendly website and freely available for drug discovery
and development scientists.

Distinct from the expert system-type formulation strategy decision
studies, the data-driven FormulationDT summarizes and quantifies the
successes of approved drugs, enabling better generalization and
providing clearer decision guidance. To facilitate end-to-end decision-
making, calculated and predicted descriptors, rather than costly exper-
imental properties, are utilized as input. Such design not only lowers the
barrier of applying FormulationDT, but also enables high-throughput
molecule assessment, which promises to expand the application sce-
narios of FormulationDT to different stages of drug discovery and
development, such as formulatability assessment and rational drug
design. The intentional development of PU-Decide framework addresses
the structural deficiencies of the available data and, more importantly,
demonstrates the utility of semi-supervised learning for localizing and
exploring specific chemical spaces in drug development scenarios. The
design and deployment of the online website enables the organic inte-
gration of machine learning models and domain knowledge, which
further lowers the application barrier of FormulationDT, enhances its
transparency, illuminates, and more importantly, empowers diverse
application scenarios. As demonstrated in Section 3.5, beyond com-
mercial drug formulation strategy decisions, FormulationDT assumes a
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designer’s role at multiple stages, from drug discovery, preclinical,
clinical, and marketed formulation development, to the development of
modified new drugs. Through its multi-scenario applications, For-
mulationDT promotes design-driven drug lifecycle development, align-
ing with the philosophy of “Quality by Design” [65]. It is anticipated to
reduce the risk and cost of drug development, enhance development
efficiency, and contribute to drug quality improvements. Furthermore,
we believe that the current study and the corresponding dataset, as a
pioneering attempt of PU learning in drug development, will contribute
to the computational pharmacy community by advancing the semi-
supervised learning paradigm for prediction and design tasks of drug
development.

As the drug formulation strategy dataset becomes more compre-
hensive, the performance of the classification models in this study is
expected to improve further. Currently, across a total of 12 classification
tasks, the best model achieves an average ROC_AUC score exceeding
0.91, ranging from 0.78 to 0.98. Specifically, 3 models have ROC_AUC
scores above 0.95, 9 above 0.90, and 11 above 0.84. Only the final
model for Task o2bl shows relatively lower predictive performance,
with an ROC_AUC of 0.7789, which, although close to 0.8, still shows
significant improvement over random guessing. At present, data-related
issues—including quantity, quality, accessibility, and representative-
ness—remain the primary limitations on model performance. First,
although the number of approved drugs has reached thousands,
considering the complexity of the task, the expansion of data volume
will lead to a more detailed portrayal of the chemical space of drugs,
which would greatly benefit the performance of FormulationDT. Sec-
ond, despite our efforts to collate formulation routes of listed drugs as
accurately and comprehensively as possible, limitations such as trans-
parency and the degree of information disclosure may lead to individual
data omissions or mislabeling. Fortunately, the implementation of our
PU learning framework PU-Decide somewhat attenuates the interfer-
ence of outliers and ensures the robustness of the models. Third, data
accessibility constrains what tasks can be accomplished. In the present
work, we designed each step of decision according to available data.
Decision 1 was for the necessity of non-conventional formulations, while
Decision 2 determined the feasibility of salt formation or specific non-
conventional strategies. However, recommending an “optimal formu-
lation strategy” based solely on marketed drug data is not feasible. This
is because determining the so-called “optimal” requires numerous
comparative studies, leading to limited data availability. Additionally,
for a particular R&D entity, the optimal formulation selection is also
influenced by factors such as available production conditions, com-
mercial and clinical needs, and intellectual property considerations
[66]. Therefore, it is reasonable for FormulationDT to determine the
technical feasibility of specific formulation strategies. The fourth aspect
concerns data representation. This study adopts calculated descriptors to
represent drug molecules, enabling end-to-end prediction. Most of these
computed descriptors are used to depict the structural and microscopic
underlying properties within atoms or molecules, offering insights for
research into solubilization mechanisms and formulation principles.
However, drug development scientists typically make formulation
strategy decisions based on macroscopic molecular properties, such as
solubility, permeability, and melting point [10,20,67,68], which pro-
vide more intuitive interpretability. In future work, by integrating
findings from existing studies on formulation strategy decision-making,
the PU-Decide framework could be adapted to handle property-based
drug representations, thereby establishing a formulation strategy
design platform more aligned with drug development intuition.

Despite data limitations, through the organic integration of the PU-
Decide framework and domain knowledge, FormulationDT has show-
cased its ability to offer expert formulation strategy decisions, providing
valuable assistance and inspiration for drug discovery and development.
As the core of machine learning, data presents one of the most common
challenges for current machine learning applications [61]. We antici-
pate that more effective data sharing between pharmaceutical academia
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and industry will enhance the performance and functionality of For-
mulationDT. Concurrently, innovations in data sharing approaches and
data regulatory science are necessary to further break down data silos
and promote the completion of digital drug development frameworks.

From a computational pharmaceutics standpoint, the successful
establishment of FormulationDT adds a vital piece to the new computer-
driven drug development paradigm we proposed in 2023 [61]. As
illustrated in Fig. 12, distinct from the conventional inefficient “screen-
validate-rescreen” formulation development procedure, the new “un-
derstand-design-validate-optimize” paradigm emphasizes the applica-
tion of computational modeling to comprehend the in vivo fate of drugs
and to guide the rational drug formulation design through an integrated
computer-driven framework. FormulationDT will serve as the pivotal
module of the in silico formulation design session. User-entered mole-
cules will initially receive recommendations from FormulationDT for
suitable formulation strategies. Subsequently, these molecules will
progress to the next step into the FormulationAlI [69] and PharmDE [70]
modules. FormulationAl is an Al prediction platform for 16 essential
formulation properties across six formulation types (cyclodextrin in-
clusions, solid dispersions, phospholipid complexes, nanocrystals, self-
emulsifying system, and liposomal formulations). Efficient in silico
excipient selection and formulation & process parameter design can be
accomplished by simply entering basic information of the drug and ex-
cipients. PharmDE, for its part, was developed to complete drug-
excipient compatibility assessments as part of excipient selections.
Both the online webserver for FormulationAl (https://formulationai.
computpharm.org/) and PharmDE (https://pharmde.computpharm.
org/) are freely accessible. As a component of the in silico develop-
ability assessment, the preformulation properties prediction module is
currently under development, which will further improve the predictive
performance and interpretability of FormulationDT. It’s expected that
the development of FormulationDT and subsequent modules will propel
the realization of an efficient computer-driven drug development
paradigm.
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Fig. 12. Future perspectives on the role of FormulationDT in computer-driven
drug development framework.
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5. Conclusion

In summary, learning from a compiled dataset of approved drug
products, the current study successfully designed and developed For-
mulationDT, the first data-driven and knowledge-guided Al formulation
strategy design platform for small molecules. Utilizing the PU-Decide
framework, the efficient data representation, and the user-friendly
webserver, the resulting Al platform can efficiently accomplish tasks
at multiple stages of drug development, such as formulatability assess-
ment, preclinical and clinical formulation strategy decisions. Bridging
the gap in conventional formulation strategy decision-making, For-
mulationDT emerges as a key puzzle piece in the new paradigm of
computer-driven drug development. Promising to enhance drug devel-
opment efficiency and improve drug quality, FormulationDT is poised
for continual refinement through user feedback, ultimately showcasing
its value in the Pharma 4.0 era.
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