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A B S T R A C T

Rational drug development would be impossible without selecting the appropriate formulation route. However, 
pharmaceutical scientists often rely on limited personal experiences to perform trial-and-error tests on diverse 
formulation strategies. Such an inefficient screening manner not only wastes research investments but also 
threatens the safety of clinical volunteers and patients. A design-oriented paradigm for formulation strategy 
determination is urgently needed to initiate rational drug development. Herein, we introduce FormulationDT, 
the first data-driven and knowledge-guided artificial intelligence (AI) platform for rational formulation strategy 
design. Learning from approved drug formulations, FormulationDT devised a comprehensive formulation 
strategy design system containing 12 decisions for both oral and injectable administration. Utilizing PU-Decide, 
our specialized partially supervised learning framework designed for positive-unlabeled (PU) scenarios, For
mulationDT developed precise and interpretable classification models for each decision, achieving area under the 
receiver operating characteristic curve (ROC_AUC) scores ranging from 0.78 to 0.98, with an average above 0.90. 
Incorporating extensive domain knowledge, FormulationDT is now accessible through a user-friendly web 
platform (http://formulationdt.computpharm.org/). Moreover, FormulationDT demonstrates its value by 
showcasing its application in proteolysis targeting chimeras (PROTACs) and recent drug approvals. Overall, this 
study created the first approved drug formulation dataset and tailored the PU-Decide framework to develop a 
high-performance, interpretable, and user-friendly AI formulation strategy design platform, which holds promise 
for driving risk reduction and efficiency gains across the life cycle of drug discovery and development.

1. Introduction

Drug development remain endeavors characterized by high invest
ment and substantial risks. The attrition rate of drug candidates entering 
Phase I clinical trial reaches as high as 90 % [1], which underscores the 
inadequacy in effectively predicting therapeutic and toxic responses at 
the preclinical stages. For one thing, the overemphasis of computer- 
aided drug design (CADD) and high-throughput drug screening on 

potent compounds leads to the “high affinity trap” [2], the insufficient 
attention given to developability has become a hurdle in the pathway to 
drug approval. For another thing, as low-hanging fruits are competi
tively pursued, the increasing complexity of drug candidates presents 
escalating formulation challenges [3]. This necessitates a higher level of 
involvement from formulation scientists in the upstream stages of drug 
development. In response, some Big Pharma have formed developability 
teams [4,5], where formulation scientists play the critical role in 
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developability screening, non-clinical and commercial formulation 
design, and expediting clinical trial entry (Fig. 1).

For small molecule drugs, solubility crisis stands out as the foremost 
developability and formulation challenge [6]. Formulation scientists 
have devised non-conventional strategies to formulate poorly water- 
soluble molecules. These strategies are based on different solubiliza
tion principles, including scaling down the solute-solvent difference in 
solubility parameters [7], decreasing the lattice energy of the solute [8], 
and maintaining supersaturation of the drug (inhibiting precipitation 
rate) [8,9]. In contrast, conventional formulations refer to approaches 
without a specific solubilization purpose. These include widely used 
techniques to adjust dissolution or enhance manufacturability, such as 
the addition of wetting agents, micronization of active pharmaceutical 
ingredients (APIs), or conversion to salt forms [10]. Formulation stra
tegies based on different principles are suitable for molecules with 
different structures. Unsuitable formulation strategies will result in 
wasted research investments, and even pose serious threats to the health 
of clinical volunteers or patients [11]. Therefore, as the early stage of 
drug development, rational developability evaluation and formulation 
strategy design, instead of trial-and-error tests, would be the crucial 
initiatives for initiating rational drug development.

By summarizing experience, researchers have compiled rules 
[12,13], classification systems [14–16], or expert systems [17–20] for 
formulation strategy decision-making for poorly water-soluble drugs. 
For example, following the Biopharmaceutics Classification System 
(BCS) [21], several extended applications and modifications based on 
the BCS concept have been suggested to help druggability assessment or 
formulation strategy decisions [14–16]. Drawing from 76 in-house 
development cases, Branchu et al. [10] explored tools like statistics, 
decision trees, and case-based reasoning to aid in formulation strategy 
selection. While the study presents valuable insights, there is potential 
for enhancement in data quantity and quality, modeling methods, and 
practical applicability. The aforementioned qualitative or semi- 
quantitative expert systematic studies on formulation strategy 
decision-making are the accumulation of valuable formulation devel
opment experience; however, the bias from individual developer’s 
experience cannot be ignored. Another limitation is that such empirical 
decision-making schemes often require in-depth investigation on drug 
properties (gastrointestinal solubility, intestinal absorption character
istics, etc.), which heavily limits the applicability, especially in drug 
discovery stages.

Considering the limitations mentioned above and motivated by the 
scientific rationale that “structure determines nature and influences 
decision-making”, we propose the machine learning solution for 
formulation strategy design, aiming to discern the correlation between 
the structure and the appropriate formulation routes. Machine learning 
research relies primarily on high-quality datasets. Compared to data 
derived from the literature or cases in the research and development 
(R&D) pipeline, marketed drug data are considered more convincing 
because they have been verified by clinical trials, drug regulatory 
agencies, and the markets [22]. Moreover, marketed drugs bring 

together the wisdom of outstanding pharmaceutical scientists across the 
globe, rather than the limited individual experience. As such, what 
lessons can we learn from approved drugs? By analyzing the available 
marketed drug information and incorporating our objectives, three 
points are concluded in Fig. 2. First, the necessity of solubilization can be 
learnt by comparing the conventional formulations with the non- 
conventional (solubilization) formulations, which is one of the crite
rions for the lead compound developability assessment and will be the 
first step in formulation strategy design [10]. Further, the feasibility of 
salt formation and specific non-conventional formulation strategies can 
be learned by generalizing the structural features of corresponding 
subsets of drugs. Based on these lessons, multiple classification models 
can be constructed to uncover each decision patterns within marketed 
drug data, then following by the established of an AI decision-making 
system.

A common issue with approved drug data is lacking reliable negative 
samples, which constitute positive-unlabeled tasks [23]. For instance, 
while we can infer that a drug marketed as a salt form should be suitable 
for salt formation, not all drugs marketed as prototypes are incapable of 
salt formation, highlighting the absence of reliable negative samples. 
Similarly, we cannot assume that a drug not employing a specific non- 
conventional strategy is technically unsuitable. For cost reasons, drug 
products using a non-conventional strategy can be considered as reliable 
positive samples, indicating a necessity for solubilization. However, new 
molecular entities (NMEs) are preferentially developed as conventional 
formulations to expedite time-to-market or prolong product lifecycle 
[24]. In other words, there remains potential to enhance certain con
ventional formulations with more complex formulation strategies. In 
data-driven formulation strategy decision-making, consideration of the 
confidence of negative samples is indispensable, i.e., what constitutes an 
“unsuitable formulation strategy”, which aligns with Kuentz et al. [25] 
in their commentary on the rational selection of bio-enabling oral for
mulations. Indeed, positive-unlabeled problems of this nature are 
prevalent because, in numerous practical scenarios, acquiring reliable 
negative data is challenging or costly, or the definition of negative data 
remains ambiguous [26]. Positive-unlabeled (PU) learning, a class of 
partially supervised machine learning methodologies, has been devised 
to address scenarios where only reliable positive data and unlabeled 
data (or uncertain negative data) are available [23]. PU learning has 
been successfully applied to several biomedical tasks [27–30]. However, 
due to labelling deficiencies, most PU learning methods have the 
problems of lacking reliable validation and failing to make instanta
neous predictions.

With the above motivations, the present study developed the first AI 
formulation strategy design platform integrating PU learning with 
domain knowledge. The main contributions are as follows. (1) The first 
AI formulation strategy design system was schemed by learning from the 
first collection of approved drug formulation data. (2) To achieve robust 
instantaneous prediction, the partially supervised learning framework 
PU-Decide was developed for PU learning tasks. (3) The AI formulation 
strategy design system was constructed through PU-Decide framework, 

Fig. 1. The typical drug development procedure and the key roles played by formulation scientists.
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with total 12 decision tasks achieving an average area under the receiver 
operating characteristic curve above 90 %. (4) Interpretable machine 
learning models for formulation strategy decisions provide new insights 
for pharmaceutical research. (5) The AI system was deployed into a user- 
friendly website to benefit pharmaceutical scientists. Moreover, the 
established platform was applied on proteolysis targeting chimeras 
(PROTACs) and recently drug approvals, showcasing its potential in 
enhancing efficiency, reducing costs, and elevating drug quality across 
the life cycle of drug discovery and development.

2. Method

2.1. Data preparation

Initially, marketed non-conventional formulations were compiled 
comprehensively and accurately from literature sources and public re
ports. Subsequently, drug molecules approved for administration via 
oral and injectable routes were summarized from the Orange Book 
database of the U.S. FDA. The non-conventional formulations were 
excluded from the approved drug dataset to form the conventional 
formulation data. Additionally, information regarding whether con
ventional formulations were marketed as prototypes or salts was iden
tified through the Orange Book.

To enable end-to-end prediction, calculated RDKit descriptors [31] 
and predicted dissociation constants (pKa) [32] are employed to 
represent drug molecules. The RDKit program was employed to calcu
late the descriptors for characterizing drug molecule. To facilitate 
broader model applicability and enable end-to-end decision-making, we 
employed the methodology proposed by Pan et al. [32] to predict the 

pKa values of input molecules. The predicted pKa data is encoded into 
four features that describe whether the molecule possesses acidic or 
basic ionizable groups, as well as the dissociation constants of the 
strongest acidic and basic ionizable groups in the molecule.

2.2. Feature engineering

For each dataset, feature engineering was conducted to minimize 
redundant features and enhance model accuracy and efficiency. Given 
the absence of reliable negative labels in the original dataset, feature 
selection methods based on model performance are not applicable. So, 
filtering methods are employed. Specifically, the following steps were 
taken for feature engineering: 

(1) Calculating the Pearson’s correlation coefficient between fea
tures and retain only one of the features if its correlation coeffi
cient exceeds 0.8.

(2) Eliminating features that do not show significant differences 
across target categories using the rank-sum test (Mann-Whitney U 
test) for binary targets, with a significance level of α = 0.01.

(3) Standardizing the data using the StandardScaler method from 
Scikit-learn library [33]. This standardization aimed to ensure 
that data for different features had the same scale (following a 
standard normal distribution with a mean of 0 and a standard 
deviation of 1). This helps mitigate discrepancies in the scales of 
various features, improves model convergence, and enhances 
model stability, particularly for algorithms sensitive to feature 
scaling.

Fig. 2. Three types of lessons learned from approved drugs: the necessity of non-conventional formulation, the feasibility of salt formation, and the feasibility of the 
specific non-conventional formulation. For oral drugs, marketed non-conventional formulations include solid dispersions, nanocrystals, lipid-based formulations, and 
cyclodextrin inclusions. Common solubilization strategies applied to marketed injectable drugs include using organic solvents/co-solvents to adjust the solvent’s 
solvation-related properties, dispersing the drug in the hydrophobic regions of surfactant micelles or liposomes, and the formation of cyclodextrin inclusions.
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2.3. The structure of PU-Decide framework

To handle the positive-unlabeled data and provide robust online 
prediction, we designed a PU learning farmwork named PU-Decide on 
the basis of the bootstrap aggregating scheme proposed by Mordelet 
et al. [34]. PU-Decide consists of three components (Fig. 3). The first and 
core component PU bagging creates multiple sub-classifiers through 
bootstrap sampling to minimize the uncertainty introduced by unlabeled 
samples. As depicted in Fig. 3a, the PU bagging component includes the 
following 4 steps: 

(1) Randomly selecting a proportion of unlabeled samples as nega
tive samples, forming a balanced training subset with positive 
samples, and constructing a sub-classifier.

(2) Applying the constructed sub-classifier to each unlabeled sample 
out of the bootstrap samples and recording the probability of 
being classified as a positive sample.

(3) Repeating the above two steps, with the mean value of the 
probabilities obtained in each iteration serving as the final posi
tive score.

(4) Labeling unlabeled samples according to a positive score 
threshold.

To broaden adaptability across diverse data structures, for the base 
classifier, four learning algorithms (decision tree, support vector ma
chine, k-nearest neighbors, and logistic regression) employing distinct 
hypothesis functions will be compared.

To tackle the challenge of validating PU bagging caused by the 
absence of true labels, we devised the second component for base clas
sifier selection and labeling threshold determination to ensure the reli
ability of label recovery. As illustrated in Fig. 3b, in each bagging round, 
several positive samples are randomly selected into the unlabeled data 
as validation points. After PU bagging, each validation point gets an 
average positive score. Moving the threshold from 1 to 0, the corre
sponding recall of the validation points can be obtained. Additionally, at 
each threshold, the proportion of unlabeled data marked as positive can 
be determined. To balance the true positive and false positive samples in 
labeling unlabeled samples, we define the RP value: 

RP value = Recall of validation points − Positive rate of unlabeled data
(1) 

Collectively, comparing the magnitude of the maximum RP values of 
various base classifiers can be utilized to select the best base classifier, 
and by identifying the threshold where the maximum RP value occurs, 
the optimal threshold can be determined. The detailed explanation was 
provided in Supplementary material 1.

Lastly, to provide robust and online prediction, binary classification 
models are trained for each task. Eight machine learning algorithms 
based on different hypothesis functions are employed for constructing 
classification models, including Decision Tree (DT), Random Forest 
(RF), k-Nearest Neighbors (KNN), Naive Bayes (nBayes), Light Gradient 
Boosting Machine (LightGBM), Logistic Regression (LR), Support Vector 
Machine (SVM), and Neural Networks (NN). These learning algorithms 
cover a spectrum of learning paradigms, including rule-based learning, 
ensemble learning, instance-based learning, probability models, linear 
models, kernel-based methods, and artificial neural networks.

2.4. Machine learning model development and evaluation

We used Scikit-learn library [33] in Python to build machine 
learning models, including DT, RF, KNN, nBayes, LightGBM, LR, SVM, 
and NN (Multilayer perceptron from Scikit-learn). To address data 
imbalance, the Synthetic Minority Oversampling Technique (SMOTE) 
[35] was applied in training set. Bayesian optimization was employed to 
explore the hyperparameter space [36], seeking the optimal hyper
parameter combinations for each algorithm. In each Bayesian 

optimization, the initial number of sampling points is set to 10, and the 
total number of optimization iterations is set to 200. For each task, the 5- 
fold splitting strategy was used to acquire five non-overlapping subsets, 
each serving as a test subset for 5 independent model training, valida
tion, and testing processes. Models were evaluated with multiple met
rics, including accuracy, precision, recall, F1 score, and MCC as 
implemented in Scikit-learn. The mean and standard deviation of the 
models’ performance on the test subsets are recorded for the evaluation 
and comparison of model generalization capability. The SHAP library 
[37] was used to interpret the features influencing each model’s de
cisions. The rank-sum test (Mann-Whitney U test) was conducted with 
the “scipy.stats” module in Python.

2.5. The deployment of the artificial intelligence platform

FormulationDT is designed to offer a robust computing environment 
for real-time calculations to multiple users. The underlying hardware of 
the platform utilizes Alibaba Cloud’s Elastic Compute Service, with 
Ubuntu as the server operating system. The platform is developed using 
the Python programming language, making full use of its mature com
munity and rich AI and data processing libraries, such as Numpy [38], 
Pandas [39], and Scikit-learn [33]. For handling web requests and 
resource access, we employ Nginx (https://www.nginx.com/) to proxy 
requests and uWSGI (https://pypi.org/project/uWSGI/) to communi
cate between Nginx and the Python program. Built on the Django 
(https://www.djangoproject.com/) framework, the platform ensures a 
clear separation between business data (models) and user interface 
(views), facilitating convenient upgrades and maintenance. MySQL (htt 
ps://www.mysql.com/) is employed as the widely used relational 
database engine for data storage. In terms of the user interface, we 
adopted asynchronous JavaScript (https://www.javascript.com/) and 
XML (AJAX) for asynchronous data retrieval, and leveraged CSS 
(cascading style sheets) and JavaScript to construct a cross-platform 
user interface. This technological combination enables FormulationDT 
to efficiently store and format models within the established framework, 
providing outstanding predictive services. The overall platform devel
opment aims to ensure high-performance computing, laying a solid 
foundation for future resource-based application programming 
interfaces.

3. Result

3.1. Approved drug data and AI formulation strategy decision system 
design

To learn from approved drugs, a formulation strategy dataset 
comprising 988 orally administered drugs and 448 injectable drugs 
approved by the U.S. FDA as of 2022 was compiled. The data distribu
tion is depicted in Fig. 4b. In the conventional formulation category, oral 
prototype drugs constitute a slight majority (55.2 %), whereas in 
injectable drugs, 62.3 % are in salt form. The frequency of non- 
conventional techniques in oral (13.8 %) and injectable drugs (14.7 
%) is close. Among the non-conventional formulations, oral drugs are 
predominantly formulated using lipid-based formulations or solid 
dispersion techniques. The more sophisticated nanocrystal techniques 
were used in fewer than 20 marketed products. There are 30 oral 
cyclodextrin inclusions marketed, nearly twice as many as those 
administered by injection. For injectable drugs, the number of marketed 
products for four non-conventional technologies ranged from 14 to 27. 
There are drugs that overlap in terms of non-conventional technologies. 
For instance, the hypolipidemic drug Fenofibrate has been successfully 
developed as a solid dispersion (Lipanthyl Supra, Lipidil EZ), nanocrystal 
(Tricor, Lipidil Micro), and lipid-based formulation (Triglide, Antara). The 
overlap information is indicated in the Venn plot in Fig. 4b.

Gleaning insights from approved drugs and incorporating the 
expertise of formulation scientists, the AI formulation strategy decision 
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Fig. 3. The PU-Decide framework. The gray, green, and pink dots represent unlabeled, positive, and negative samples, respectively. a. Illustration of the PU bagging 
method. In this study, the number of iterations was set to 1000 based on preliminary experimental results. b. PU learning validation method for base classifier 
selection and threshold screening. Compare the maximum RP values of different base classifiers to select the best one. Identify the threshold corresponding to the 
maximum RP value allows determination of the optimal threshold. Fewer randomly selected positive samples per iteration is preferable. In this study, the number of 
randomly selected positive samples was set to 2 to ensure that even tasks with minimal data could provide 100 unique sample selections. c. Procedures of classi
fication model construction on the label-recovered data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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system was designed as Fig. 5. Decision 1 pertains to the formulatability 
decision about whether the molecule necessitates adopting a non- 
conventional solubilization strategy. Utilizing Decision 1, targeted 
screening or designing lead compounds with high formulatability in 
drug discovery process will reduce R&D and production expenses. 
Simultaneously, accurately identifying the solubility challenges and 
promptly implementing solubilization strategies are crucial for miti
gating drug development risks [40]. In conventional formulations, 
converting a prototype drug into a salt form is a widely employed and 
relatively low-cost chemical modification strategy. Salt-formation en
hances the polarity of drug molecules and improves their interaction 
with the polar solvent, thereby increasing solubility. However, not all 
molecules can undergo salt formation, depending on factors such as 
ionizable groups, crystallizability, and stability of the target salts [41]. 
Assessing the feasibility of salt formation would be the subsequent 
practical decision (Decision 2a). Non-conventional formulation strate
gies, grounded in various solubilization principles, possess distinct ad
vantages and disadvantages, with their applicability to different types of 
drug candidates varying accordingly. Hence, implementing Decision 2b 
will facilitate the recommendation of feasible non-conventional for
mulations, thereby enhancing the efficiency of both non-clinical and 
clinical formulation development. Further, the whole formulation 
strategy decision system can be decomposed into 12 machine learning 
tasks as shown in Table 1.

3.2. Processing positive-unlabeled datasets with PU-Decide

To select the base classifiers for each task, we first compared the 
maximum RP values obtained from PU bagging with 4 learning algo
rithms, DT, SVM, KNN, and LR, for the 12 tasks (Fig. 6a). Overall, the 
maximum RP values for all tasks lie between 0.35 and 0.68. For different 
tasks, three algorithms, except KNN, exhibit their respective strengths. 
DT and SVM have advantages in handling non-linear relationships in 
high-dimensional spaces, whereas LR is often suitable for linearly 
divisible or approximately linearly divisible problems. The optimal 

performance of DT, SVM, and LR in four, three, and five tasks, respec
tively, underscores the varied data characteristics and correlation pat
terns within different tasks. This emphasizes careful selections of base 
classifiers. KNN typically excels in local pattern recognition but may 
struggle with global generalization in high-dimensional spaces. Addi
tionally, KNN is more sensitive to the choice of the hyperparameter k 
value [42], and as a base classifier without a tuning process, this char
acteristic somewhat limits its application.

To determine the optimal threshold, the recall curves of the valida
tion points and the RP values for each task across different thresholds 
(the screening step is 0.01) were depicted (Fig. 6b), employing the 
optimal base classifiers. As the threshold transitions from 1 to 0, the RP 
values exhibit a trend of increasing and then decreasing, aligning well 
with the theoretical inference (Fig. S1). By locating the maximum RP 
value, the optimal thresholds for each task were determined. As shown 
in Fig. 6c, the optimal thresholds are distributed from 0.46 to 0.73. The 
threshold screening compensates for the lack of reliable negative data 
and inadequate hyperparameter optimization of the base classifiers. At 
the corresponding optimal thresholds, the recall distribution of the 
validation points ranges from 0.56 to 0.93 (Fig. 6d), averaging at 0.73. 
This highlights the effectiveness of the base classifier in identifying 
positive samples, even under data and training constraints.

The determined base classifiers and thresholds were chosen to 
perform PU bagging on the 12 datasets, respectively. The status of the 
original and relabeled datasets for all 12 tasks is shown in Table 2. 
Taking Task_o1 as an example, 21.36 % (182 of 852) of the unlabeled 
data were identified as positive samples in PU bagging using 0.56 as the 
decision threshold. This finding suggests that approximately 20 % of 
orally administered drugs, traditionally formulated as conventional 
formulations, offer potential for the development of modified new drugs 
using bio-enabling technology, thereby enhancing safety and efficacy. In 
salt formation decisions, the PU bagging results showed that for oral and 
injectable drugs, 22.13 % and 45.83 % of the prototypes were techni
cally feasible to be developed into salt forms, respectively. Across the 
eight Decision 2b tasks concerning the feasibility of specific non- 

Fig. 4. Data profile. a. Data processing and flow for positive-unlabeled bagging and machine learning model evaluation; b. Formulation strategy distribution for 
marketed small molecule drugs as of 2022. The pie chart shows the proportion of oral versus injectable drugs. The donut chart illustrates the ratio of conventional 
formulations to non-conventional formulations, as well as the proportion of prototype drugs to salt form drugs within conventional formulations. The Venn diagram 
displays the overlap among specific non-conventional formulations. The bar chart presents the number of approved specific non-conventional formulation products.
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conventional formulation strategies, the positivity rate for unlabeled 
samples ranged from 3 % to 29 %. Such findings are promising to pro
vide inspiration for the development of modified new drugs.

3.3. Model construction and evaluation

To more effectively assess machine learning model generalization 
ability, for each label-recovered dataset, a 5-fold data splitting approach 
was employed. Each of these folds was utilized as a test subset (20 %), 
while the remaining data was divided into training and validation 

subsets via random stratified sampling (Fig. 3a). The model general
ization ability was evaluated by averaging the model performance ob
tained from five entirely independent model training, validation, and 
testing processes. Model performance comparison is shown in Supple
mentary material 2. Overall, SVM, NN, and the tree-based ensemble 
learning algorithms, RF and LightGBM, exhibit superior performance. 
Tree-based ensemble learning algorithms possess the capability for 
nonlinear modeling, resistance to overfitting, and relative robustness to 
noise and outliers. Additionally, these algorithms can handle imbal
anced classes and mixed features, often exhibiting excellent 

Fig. 5. Overview of the artificial intelligence formulation strategy design system. Decision 1 concerns determining whether the molecule requires a non-conventional 
solubilization strategy. Decision 2a involves evaluating the feasibility of salt formation. Decision 2b to recommend feasible non-conventional formulations. The 
positive-unlabeled learning framework, PU-Decide, will be utilized for each decision. Various computational frameworks, tools, and libraries will be utilized to build 
the user-friendly AI platform FormulationDT.
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performance in classification tasks with small datasets. In contrast, DT 
tends to overfit with limited samples and is susceptible to variations in 
input data [43]. The nBayes performed the poorest in this study. Naive 
Bayes algorithms are significantly influenced by prior probabilities and 
may struggle to accurately estimate the independence between features 
in the presence of limited data points, potentially leading to incorrect 
assumptions about the true data distribution [44]. The detailed perfor
mances of these models are presented in Table 3. The average perfor
mance metrics are shown in Fig. 7a. Overall, the average accuracy, 
recall, precision, and ROC_AUC of the 12 tasks are 86.4 %, 82.2 %, 85.9 
%, and 91.2 %, respectively, which demonstrates a balanced and satis
factory classification performance of the developed models. Looking at 
the specifics, there is still room for improvement in the performance of 
feasibility predictions for three specific non-conventional formulations: 
lipid-based formulation, surfactant micelles, and liposomal formulation. 
This might be attributed to the fact that the purpose of these strategies is 
mainly, but not limited to, drug solubilization. For instance, some oral 
drugs formulated as lipid-based formulations aim to enhance the sta
bility of APIs [45]. Such objective limitations may impact the quality of 
available data and subsequently influence model performance.

To demonstrate the necessity and effectiveness of employing a PU 
learning strategy to handle positive-unlabeled data, we conducted 
ablation experiments. Fig. 7b compares the MCC (Matthews Correlation 
Coefficient) metrics of classification models constructed using the same 
modeling process after three different data processing methods. For each 
task, the PU learning strategy adopted in this study significantly 
improved classification performance compared to modeling with raw 
data. Additionally, we randomly designated a certain number of samples 
(equal to the number of known positive samples) as positive samples and 
applied the same PU-Decide framework for PU learning on this artifi
cially labeled dataset. The results indicate that such a random dataset 
does not lead to robust improvements in classification performance after 
PU learning. This also demonstrates that PU learning relies on the cor
rect definition of the positive-unlabeled problem.

3.4. Model interpretation

To enhance user trust and gain insights from models, statistics and 
SHAP (Shapley Additive Explanations) analysis [37] were employed for 

model interpretation. To understand the overall impact of molecule 
features on formulation strategy design, we conducted rank-sum tests on 
12 tasks, identifying top 20 molecule features with the most significant 
average impact. Subsequently, these key features were clustered ac
cording to their correlations, resulting in Fig. 8a, which shows that six 
main feature categories influence formulation strategy design: molecu
lar complexity, aromaticity, basic ionization state, carboxyl group, lac
tones, and the proportion of tertiary carbons. For decision-making 
specific to each task, we performed SHAP analysis, which elucidates 
how the model generates predictions for each sample by assigning 
contribution values to individual features. Fig. 8b illustrates the feature 
importance ranking determining the necessity of non-conventional 
formulation for oral drugs. Prominent features include molecular ioni
zation state, electronegativity, hydrophobicity, and substructural char
acteristics. A higher basic dissociation constant (indicating stronger 
basicity) negatively contributes to the necessity for solubilization, which 
is logical since basic molecules are more likely to ionize in the acidic or 
mildly basic gastrointestinal environment, enhancing their interaction 
with polar solvents and increasing apparent solubility [46]. Conversely, 
highly ionizable molecules can improve solubility through salt forma
tion, reducing the need for bio-enabling formulations. Fig. 8c depicts the 
interaction effect of lipophilicity and basic groups on oral molecule 
solubilization necessity. The model quantified the cutoff value of Mol
LogP’s solubilization necessity contribution as 2.3. For molecules 
without basic ionizable groups, lipophilicity will impose a relatively 
larger solubilization necessity contribution. Fig. 8d compares the deci
sion basis for salt formation feasibility of oral and injectable drugs, using 
a heatmap to present clusters of samples influenced by different feature 
combinations. For oral drugs, the ionization constant of the basic groups 
significantly determines the feasibility of salt formation, as it directly 
influences the ionization state of drugs in the gastrointestinal tract, 
affecting absorption rate and extent. For injectable drugs, the factors 
influencing salt formation feasibility are more related to the combina
tion of molecular electrostatic characteristics. Fig. 8e quantifies the 
impact of molecular mass on the choice between two solubilization 
strategies. For solid dispersions, a molecular mass above 430 provides a 
positive contribution. Notably, while solid dispersions are suitable for 
molecules with relatively large molecular mass, these molecules typi
cally exhibit lower complexity (characterized by the lower HallKier
Alpha index [47]), meaning they generally possess fewer ring structures, 
branches, and complex functional groups. For cyclodextrin inclusion 
complexes, a relative molecular mass above 420 and poor drug-likeness 
(characterized by the lower QED index [13]) contribute negatively 
because of the limited cavity volume of cyclodextrins. Fig. 8f illustrates 
the quantitative impact of FractionCSP3 (the proportion of tertiary 
carbons in the carbon skeleton) on the choice between injectable 
cyclodextrin inclusions and surfactant micelles. Poorly soluble mole
cules with low FractionCSP3, often termed “brick-dust” [48], can benefit 
from cyclodextrin inclusion to prevent aggregation and crystallization, 
while insoluble molecules with high FractionCSP3, referred to as 
“grease-ball”, can be stabilized within the hydrophobic regions of mi
celles. Conversely, molecules with high FractionCSP3 may have more 
three-dimensional structures that hinder stable binding with cyclodex
trin cavities [49]. Fig. 8g presents the decision-making process of the 
solubilization strategy for Fenofibrate, a poorly soluble drug that has 
been successfully marketed as lipid-based formulations, nanocrystals, 
and solid dispersions. Model interpretability analysis clearly demon
strates the key molecular features that recommend or dissuade certain 
formulation strategies. For Fenofibrate, excessive lipophilicity is a pri
mary reason for its unsuitability for cyclodextrin inclusion, as it would 
lead to overly strong binding with the cyclodextrin cavity, hindering 
dissociation and absorption at the absorption window. Different tasks 
reveal distinct molecular features impacting decisions, as shown in 
Fig. S2. Some results align with empirical knowledge, while others 
provide new insights for formulation scientists. By elucidating molecular 
features related to drug formulation performance, pharmaceutical 

Table 1 
The definition and description of the involving machine learning tasks.

Administration 
route

Tasks Task description Models

Oral

Task_o1 Necessity of being formulated as 
a non-conventional formulation

Model_o1

Task_o2a
Feasibility of being formulated 
as salt form Model_o2a

Task_o2bs
Feasibility of being formulated 
as solid dispersion

Model_o2bs

Task_o2bn Feasibility of being formulated 
as nanocrystal

Model_o2bn

Task_o2bl Feasibility of being formulated 
as lipid-based formulations

Model_o2bl

Task_o2bc
Feasibility of being formulated 
as cyclodextrin inclusions Model_o2bc

Injectable

Task_i1
Necessity of being formulated as 
non-conventional formulation

Model_i1

Task_i2a Feasibility of being formulated 
as salt form

Model_i2a

Task_i2bo
Feasibility of being formulated 
with organic solvent/co-solvent Model_i2bo

Task_i2bs
Feasibility of being formulated 
as surfactant micelles Model_i2bs

Task_i2bl
Feasibility of being formulated 
as liposomal formulation

Model_i2bl

Task_i2bc Feasibility of being formulated 
as cyclodextrin inclusion

Model_i2bc
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Fig. 6. Positive-unlabeled bagging results. a. The maximum RP value of 4 base classifiers for each task. The maximum RP values of the best base classifiers are 
bolded. b. The curve of the recall of validation points (blue lines) and the RP value (orange lines) with the best base classifier for each task. The dashed line indicates 
the optimal threshold, along with the corresponding recall of validation points and maximum RP values at that threshold. c. The distribution of optimal thresholds 
with the best classifiers. The dashed line indicates the threshold 0.5. d. The recall of validation points and the maximum RP value with the best base classifier and 
optimal threshold for each task. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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scientists can also optimize drug design by adjusting molecular struc
tures during early development stages to mitigate certain feature im
pacts. Furthermore, SHAP analysis can assess interactions between 
different descriptors that might produce nonlinear effects in complex 
biological systems. These profound insights will facilitate more accurate 
predictions for the in vivo fate of drugs.

3.5. Web-platform construction and function display

To broaden the application scenarios and reduce the application 
barrier of the developed AI system, we deployed it as a user-friendly web 
platform named FormulationDT. With FormulationDT, users only need 

to input drug names or the structure of candidate drugs to promptly 
receive recommendations for suitable formulation strategies. The user 
interface of FormulationDT comprises two primary modules. The 
“Webserver” module serves as the portal for accessing and utilizing 
FormulationDT, while the “Documentation” module offers information 
pertaining to the dataset and model performance. Users simply need to 
type the name or input the structure of the query molecule using either 
Simplified Molecular Input Line Entry System (SMILES) [50] notation or 
by directly drawing it. FormulationDT will then intelligently perform 
the prediction and analysis process. The format conversion function of 
ChemDes [51] is provided to facilitate the user to obtain the SMILES of 
the molecule. Fig. 9 displays the snapshots of the FormulationDT user 

Table 2 
Overview of the data volume before and after positive-unlabeled bagging for 12 tasks.

Task Original dataset Dataset after PU bagging

Positive 
samples

Unlabeled 
samples

Total 
samples

Recognized positive 
samples

Positive rate of unlabeled 
samples

Positive 
samples

Negative 
samples

Task_o1 136 852 988 182 21.36 % 318 670
Task_o2a 382 470 852 104 22.13 % 486 366
Task_o2bs 48 88 136 22 25.00 % 70 66
Task_o2bn 16 120 136 35 28.93 % 51 85
Task_o2bl 55 81 136 3 3.70 % 58 78
Task_o2bc 30 106 136 22 20.75 % 52 84
Task_i1 66 382 448 134 35.08 % 200 248
Task_i2a 238 144 382 66 45.83 % 304 78
Task_i2bo 22 44 66 9 20.45 % 31 35
Task_i2bs 27 39 66 11 28.21 % 38 28
Task_i2bl 14 52 66 4 7.69 % 18 48
Task_i2bc 17 49 66 6 12.24 % 23 43

Table 3 
Detailed performance of the optimal models for 12 tasks (mean ± standard deviation, 5 independent tests).

Model Accuracy Precision Recall ROC_AUC F1 score MCC

Model_o1 0.8927 ± 0.0108 0.8429 ± 0.0223 0.8208 ± 0.0447 0.9348 ± 0.0161 0.8309 ± 0.0204 0.7533 ± 0.0261
Model_o2a 0.8686 ± 0.0306 0.9035 ± 0.0426 0.8643 ± 0.0537 0.9432 ± 0.0303 0.8821 ± 0.0286 0.7375 ± 0.0619
Model_o2bs 0.9193 ± 0.0399 0.9846 ± 0.0344 0.8571 ± 0.0714 0.9768 ± 0.0288 0.9150 ± 0.0440 0.8482 ± 0.0740
Model_o2bn 0.9259 ± 0.0454 0.9022 ± 0.0606 0.9000 ± 0.1000 0.9665 ± 0.0218 0.8987 ± 0.0648 0.8434 ± 0.0986
Model_o2bl 0.7352 ± 0.0961 0.7115 ± 0.1156 0.6394 ± 0.2160 0.7789 ± 0.1040 0.6608 ± 0.1423 0.4605 ± 0.2085
Model_o2bc 0.8754 ± 0.0659 0.8402 ± 0.1320 0.8691 ± 0.1368 0.9191 ± 0.0584 0.8423 ± 0.0851 0.7564 ± 0.1233
Model_i1 0.8528 ± 0.0392 0.8444 ± 0.0577 0.8250 ± 0.0586 0.9245 ± 0.0341 0.8333 ± 0.0439 0.7035 ± 0.0799
Model_i2a 0.8899 ± 0.0306 0.9278 ± 0.0438 0.9375 ± 0.0244 0.9228 ± 0.0522 0.9317 ± 0.0163 0.6495 ± 0.0140
Model_i2bo 0.8945 ± 0.0671 0.9500 ± 0.1118 0.8429 ± 0.1558 0.9075 ± 0.0610 0.8799 ± 0.0780 0.8103 ± 0.1187
Model_i2bs 0.7857 ± 0.1022 0.8556 ± 0.0843 0.7679 ± 0.1651 0.8674 ± 0.1697 0.8012 ± 0.0988 0.5926 ± 0.1977
Model_i2bl 0.8615 ± 0.0843 0.7833 ± 0.2173 0.7167 ± 0.1826 0.8478 ± 0.1021 0.7310 ± 0.1631 0.6542 ± 0.2120
Model_i2bc 0.8505 ± 0.0853 0.7928 ± 0.1308 0.7800 ± 0.2465 0.9544 ± 0.0435 0.7699 ± 0.1614 0.6767 ± 0.2074

Fig. 7. Average model performance and model comparison. a. Average performance of the top models across 12 tasks. The shading areas and the values in pa
rentheses denote the standard deviation. b. Spider plot comparing MCC metrics across 12 tasks using three different data processing methods. Gray: PU learning 
method adopted in this research; orange: no PU learning; purple: PU learning with randomly selected positive samples. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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interface. The output content consists of three components. First, it 
presents the calculated information and characteristics of the input 
molecule. Second, it visualizes the decision-making process for formu
lation strategy. In this visualization, the formulation strategy recom
mended by the AI system is depicted in colour, with the number of 
pentagrams representing the level of recommendation which is derived 
from the probability belonging to a specific class predicted by machine 
learning models. Note that Task 2b consists of multiple binary 

classification models, so it is possible for no viable strategies to be 
selected. In this case, alternative solubilization strategies not included in 
this study can be considered for the queried molecule. Lastly, For
mulationDT integrates the outputs of the AI system with domian 
knowledge to provide interpretation of the decision results, which en
compasses various application scenarios.

The core functionality of FormulationDT is to decide on the appro
priate commercial formulation strategy according to the input 

Fig. 8. Model interpretation and analysis. a. Clustered correlation heatmap of top 20 key features with the most significant average impact across the 12 tasks. The 
green and red colour respectively indicates positive and negative correlation. b. Beeswarm plot of the contributions of top 10 important features for Model_o1. Blue 
dots indicate instances with lower feature values, while red dots represent higher values. The horizontal coordinate for each instance reflects the influence of the 
feature value on model decision, with positive and negative values indicating positive and negative contribution to the positive model decision, respectively. The 
absolute magnitude of the coordinate indicates the quantitative contribution. c. Interaction dependence plot of the influence of MolLogP and basic group existance on 
Model_o1. Each point represents a sample. The colour of the point indicates the presence (red) or absence (blue) of basic ionizable groups. The horizontal coordinate 
represents the actual MolLogP value of the sample, while the y-axis represents the contribution of this sample’s MolLogP value to the model’s positive prediction. The 
value greater or less than 0 respectively indicates a positive or negative contribution. d. Heatmap plots for Model_o2a and Model_i2a. The top section is the model’s 
output, clustered and arranged based on similar output values obtained from different feature combinations. The heatmap below represents the influence of feature 
combinations, with red and blue respectively indicating positive and negative contributions of the feature to the model’s positive output. e. Interaction dependance 
plot showing the interaction of MolWt with HallKierAlpha and QED index to influence the prediction of Model_o2bs and Model_o2bc, respectively. f. Dependance plot 
showing how FractionCSP3 influence the prediction of Model_i2bc and Model_i2bs. The interpretation of subplot e and i are similar to subplot c. g. The force plots of 
four oral bio-enabling formulation feasibility analysis for Fonofibrate. The length of the colour blocks quantifies the contribution of the features to the model’s 
prediction, with red and blue representing positive and negative contributions to the model’s positive output, respectively. The bold numbers indicate the models’ 
predicted positive outcome probability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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molecules. Based on such core function and the well-developed result 
interpretation, FormulationDT can serve as a formulation expert to exert 
influence across various stages of drug discovery. First, FormulationDT 
provides a formulatability index for drug discovery. For oral and 
injectable administration, the formulatability index equals the proba
bility that the input molecule is negative (indicating that non- 
conventional formulation strategies are not required) predicted by 
Model_o1 or Model_i1, respectively. The formulatability index ranges 
from 0 to 1, with values closer to 1 indicating lower difficulty in 
formulating the molecule. The formulatability index can be initially 
divided into three equal ranges indicating low, medium, and high for
mulatability. This can serve as one of the developability metrics for 
screening, generating, or designing drug molecules to control the cost 

and risk of subsequent drug development stages. Second, in the pre
clinical stage, if a simple solution or suspension fails to meet the 
formulation requirements, combining the core functionality of For
mulationDT and the special requirements of preclinical formulations, 
the established AI system can also recommend feasible non- 
conventional formulations, thus facilitating the design of formulations 
with consistent and reproducible exposure for PK/PD studies, as well as 
formulations achieving high exposure for toxicity studies. Third, For
mulationDT can assist formulation scientists in advancing suitable 
commercial formulations into clinical trials with minimal investment, 
thereby decreasing reliance on Fit-for-purpose (FFP) formulations. Such 
endeavors have been noted to significantly abbreviate the duration from 
Investigational New Drug (IND) to New Drug Application (NDA) [16]. In 

Fig. 9. Snapshots of the user interface and functionality display of FormulationDT. Users can type the name or input the structure of the query molecule using either 
Simplified Molecular Input Line Entry System (SMILES) notation or by directly drawing it. The output of FormulationDT will include the basic information of the 
query molecule, the formulation strategy design results for both oral and injectable administration. Moreover, the detailed interpretation for the design result will be 
provided to enable the application of FormulationDT in drug discovery, preclinical formulation design, expediting commercial formulations into clinical trials, 
feasible commercial formulation strategy decision, and identifying chance for modified new drugs.
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early clinical studies such as First in human study, Proof of concept 
study, etc., the FFP approach may be adopted to fulfill requirements by 
employing simple formulations, thereby avoiding excessive investment 
in formulation development during the high-risk clinical trial phase. 
However, the drawbacks of FFP approaches are evident; formulations 
unsuitable for large-scale production or failing to meet market and 

commercial demands necessitate formulation modifications later in 
development. These changes can potentially impact the pharmacoki
netics of the initial FFP formulation, resulting in clinical downtime and 
necessitating bridging in vivo studies, thereby incurring additional risk 
and investment. Forth, FormulationDT can be employed for the retro
spective analysis of marketed molecular entities to identify 

Fig. 10. The application of FormulationDT on PROTACs. The central boxplot shows the oral prediction results of FormulationDT for 3270 PROTACs, with each gray 
dot representing a sample. Above is a histogram of the frequency distribution of the necessity for oral solubilization of PROTACs. Below are the solubilization 
technique design results and cyclodextrin inclusion feasibility analysis for two example molecules, shown as force plots. The length of the colour blocks quantifies the 
contribution of features to the model’s prediction, with red and blue representing positive and negative contributions to the model’s positive output, respectively. The 
bold numbers indicate the probability of a positive result predicted by the model. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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opportunities for developing formulation optimization-based modified 
new drugs. This is essential for improving drug efficacy, safety, and 
adherence, while also addressing unmet clinical and market needs.

3.6. Applications of FormulationDT

3.6.1. Prospective study facilitating PROTACs development
To demonstrate the prospective guidance provided by For

mulationDT for new molecule formulation development, we applied 
FormulationDT to oral formulation strategy design for 3270 PROTACs 
curated in PROTAC-DB [52,53]. PROTACs induce selective degradation 
of target proteins through the ubiquitin-proteasome system, represent
ing an innovative drug discovery strategy that has garnered widespread 
attention. Despite significant progress in the past decade, designing 
ideal PROTACs remains a substantial challenge. To date, several PRO
TACs are in clinical stages, but none have been approved. In Decision 1, 
FormulationDT predicts that non-conventional formulation is necessary 
for over 85 % PROTACs. PROTACs are heterobifunctional molecules 
consisting of a small molecule targeting the protein of interest, a small 
molecule recruiting an E3 ligase, and a linker connecting these two 
moieties. The high molecular weight limits their solubility, perme
ability, and other drug-like properties. Notably, differences in the 
average positive scores of PROTACs composed of different E3 ligase li
gands were observed. As depicted at the top of Fig. 10, a total of 2047 
CRBN-targeted PROTACs exhibited lower average positive scores 
compared to VHL-targeted PROTACs, indicating that the CRBN-targeted 
PROTACs tend to have better formulatability. Currently most of the 
PROTACs entering clinical trials are CRBN-targeted PROTACs, partly 
due to the enhanced druggability attributed to the relatively smaller 
molecular weight of CRBN E3 ligase ligands [54]. Regarding Decision 
2a, the models deemed the majority of PROTAC molecules feasible for 
salt formation. This suggests to pharmaceutical scientists that, for mol
ecules with moderate solubility enhancement needs, prioritizing salt 
formation could be advantageous. All molecules were considered suit
able for development as solid dispersions which is exactly the commonly 
used bio-enabling strategy for PROTACs [55]. Nanocrystals and lipid- 
based formulations exhibit structural preferences in PROTAC applica
tions. With FormulationDT, the feasibility of developing PROTACs into 
nanocrystals or lipid-based formulations can be quantitatively assessed. 
Regarding cyclodextrin inclusion technology, the model indicates that 
most PROTACs are unsuitable. This is because PROTACs consist of three 
linked components, resulting in elongated molecular shapes (e.g., 
molecule A) that do not fit well within the cavities of commonly used 
cyclodextrins [56]. However, there are exceptions; molecules with 
relatively smaller molecular weight and length, such as molecule B, are 
considered to have potential for development as cyclodextrin com
plexes. FormulationDT showcases its ability to make comprehensive 
formulation decisions in bulk and swiftly for any drug candidate with 
known structure, which will greatly facilitate drug development through 
rational formulation strategy selection and has the potential to guide the 
screening and design of drug molecules.

3.6.2. Identifying modification opportunities for approved drugs
Through retrospectively evaluating marketed molecules, For

mulationDT can also identify opportunities for modified new drugs, 
which are of vital importance to enhance the efficacy, safety, and 
adherence of drugs and to fill unmet clinical gaps [57]. In 2023, the U.S. 
FDA approved 29 small molecule NMEs, with 23 of them being orally 
administered. Among these oral molecules, 7 were marketed as salt 
forms. The results of FormulationDT’s batch predictions on such orally 
administered NMEs are presented in Fig. 11. For the formulatability 
assessment in Decision 1, FormulationDT predicted that 10 out of the 23 
orally administered NMEs required improvements in delivery efficiency 
through non-conventional formulation strategies (the left side of 
Fig. 11). Suitable solubilization strategies were also provided by For
mulationDT, with different technically recommended priorities. With 

the intelligent decisions of FormulationDT, users can quickly follow up 
and efficiently conduct the development of modified new drugs in 
conjunction with their respective non-technical considerations. For the 
remaining 13 molecules with high formulatability, FormulationDT’s salt 
formation feasibility decision concluded that 8 of them could be 
formulated as salt forms (the right side of Fig. 11). All 7 molecules 
currently marketed in salt form were successfully identified by For
mulationDT as feasible for formulation as salt, highlighting For
mulationDT’s high recall in predicting salt formation feasibility. 
Capivasertib, currently marketed as a prototype, was assigned a salt- 
forming feasibility score of up to 0.98 by FormulationDT. This sug
gests that drug developers may explore the clinical or manufacturing 
advantages of Capivasertib’s salt form to uncover opportunities for 
modified new drugs. For the remaining 5 molecules determined by 
FormulationDT as not requiring being formulated as non-conventional 
formulations and lacking salt formation feasibility, efforts for modified 
new drugs should not be wasted in the above manner. Possible alter
native approaches can be explored, such as optimizing manufacturing 
processes or making slight modifications to the molecular structure to 
enhance stability or reduce toxicity.

4. Discussion

In the era of Pharma 4.0, significant progress has been made in AI- 
driven drug design [58,59] and rational formulation design [60–64]. 
However, as the early stage of drug development, formulation strategy 
decisions still rely on costly trial-and-error tests or limited experience. 
Experience is helpful, provided it is explicit and robust. Over the past 
century of modern pharmacy, thousands of approved drugs have accu
mulated the wisdom from countless scientists worldwide. Quantifying, 
instrumenting, and organically integrating these valuable lessons into an 
AI decision-making platform is the motivation and goals of the present 
work. To begin with, the formulation information of small molecule 
drugs approved by the U.S. FDA was manually collected, constituting 
what is, to our knowledge, the first systematic dataset on this topic. 
Following this, based on the scientific principle that structure de
termines nature and influences decision-making, we developed the PU- 
Decide framework to address the problem of missing reliable negative 
samples in marketed drug data to establish correlations between mole
cule structure and formulation decisions. The average ROC_AUC score of 
the best models exceeded 0.91 for total 12 classification tasks, ranging 
from 0.78 to 0.98. Lastly, integrating data-driven machine learning 
models with domain knowledge, the first AI formulation strategy 
decision-making platform was successfully developed, which is pre
sented in a user-friendly website and freely available for drug discovery 
and development scientists.

Distinct from the expert system-type formulation strategy decision 
studies, the data-driven FormulationDT summarizes and quantifies the 
successes of approved drugs, enabling better generalization and 
providing clearer decision guidance. To facilitate end-to-end decision- 
making, calculated and predicted descriptors, rather than costly exper
imental properties, are utilized as input. Such design not only lowers the 
barrier of applying FormulationDT, but also enables high-throughput 
molecule assessment, which promises to expand the application sce
narios of FormulationDT to different stages of drug discovery and 
development, such as formulatability assessment and rational drug 
design. The intentional development of PU-Decide framework addresses 
the structural deficiencies of the available data and, more importantly, 
demonstrates the utility of semi-supervised learning for localizing and 
exploring specific chemical spaces in drug development scenarios. The 
design and deployment of the online website enables the organic inte
gration of machine learning models and domain knowledge, which 
further lowers the application barrier of FormulationDT, enhances its 
transparency, illuminates, and more importantly, empowers diverse 
application scenarios. As demonstrated in Section 3.5, beyond com
mercial drug formulation strategy decisions, FormulationDT assumes a 
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Fig. 11. The formulation strategy design by FormulationDT for the 23 oral NMEs approved by the U.S. FDA in the year 2023. The scores and the number of yellow 
stars indicate the degree of necessity for solubilization, feasibility for solubilization strategies, or feasibility for salt formation. Among the 13 molecules that do not 
require solubilization, 7 molecules that are marketed in salt form (with specific salt types noted in green text) were all correctly predicted (green check marks) with 
high salt formation feasibility. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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designer’s role at multiple stages, from drug discovery, preclinical, 
clinical, and marketed formulation development, to the development of 
modified new drugs. Through its multi-scenario applications, For
mulationDT promotes design-driven drug lifecycle development, align
ing with the philosophy of “Quality by Design” [65]. It is anticipated to 
reduce the risk and cost of drug development, enhance development 
efficiency, and contribute to drug quality improvements. Furthermore, 
we believe that the current study and the corresponding dataset, as a 
pioneering attempt of PU learning in drug development, will contribute 
to the computational pharmacy community by advancing the semi- 
supervised learning paradigm for prediction and design tasks of drug 
development.

As the drug formulation strategy dataset becomes more compre
hensive, the performance of the classification models in this study is 
expected to improve further. Currently, across a total of 12 classification 
tasks, the best model achieves an average ROC_AUC score exceeding 
0.91, ranging from 0.78 to 0.98. Specifically, 3 models have ROC_AUC 
scores above 0.95, 9 above 0.90, and 11 above 0.84. Only the final 
model for Task_o2bl shows relatively lower predictive performance, 
with an ROC_AUC of 0.7789, which, although close to 0.8, still shows 
significant improvement over random guessing. At present, data-related 
issues—including quantity, quality, accessibility, and representative
ness—remain the primary limitations on model performance. First, 
although the number of approved drugs has reached thousands, 
considering the complexity of the task, the expansion of data volume 
will lead to a more detailed portrayal of the chemical space of drugs, 
which would greatly benefit the performance of FormulationDT. Sec
ond, despite our efforts to collate formulation routes of listed drugs as 
accurately and comprehensively as possible, limitations such as trans
parency and the degree of information disclosure may lead to individual 
data omissions or mislabeling. Fortunately, the implementation of our 
PU learning framework PU-Decide somewhat attenuates the interfer
ence of outliers and ensures the robustness of the models. Third, data 
accessibility constrains what tasks can be accomplished. In the present 
work, we designed each step of decision according to available data. 
Decision 1 was for the necessity of non-conventional formulations, while 
Decision 2 determined the feasibility of salt formation or specific non- 
conventional strategies. However, recommending an “optimal formu
lation strategy” based solely on marketed drug data is not feasible. This 
is because determining the so-called “optimal” requires numerous 
comparative studies, leading to limited data availability. Additionally, 
for a particular R&D entity, the optimal formulation selection is also 
influenced by factors such as available production conditions, com
mercial and clinical needs, and intellectual property considerations 
[66]. Therefore, it is reasonable for FormulationDT to determine the 
technical feasibility of specific formulation strategies. The fourth aspect 
concerns data representation. This study adopts calculated descriptors to 
represent drug molecules, enabling end-to-end prediction. Most of these 
computed descriptors are used to depict the structural and microscopic 
underlying properties within atoms or molecules, offering insights for 
research into solubilization mechanisms and formulation principles. 
However, drug development scientists typically make formulation 
strategy decisions based on macroscopic molecular properties, such as 
solubility, permeability, and melting point [10,20,67,68], which pro
vide more intuitive interpretability. In future work, by integrating 
findings from existing studies on formulation strategy decision-making, 
the PU-Decide framework could be adapted to handle property-based 
drug representations, thereby establishing a formulation strategy 
design platform more aligned with drug development intuition.

Despite data limitations, through the organic integration of the PU- 
Decide framework and domain knowledge, FormulationDT has show
cased its ability to offer expert formulation strategy decisions, providing 
valuable assistance and inspiration for drug discovery and development. 
As the core of machine learning, data presents one of the most common 
challenges for current machine learning applications [61]. We antici
pate that more effective data sharing between pharmaceutical academia 

and industry will enhance the performance and functionality of For
mulationDT. Concurrently, innovations in data sharing approaches and 
data regulatory science are necessary to further break down data silos 
and promote the completion of digital drug development frameworks.

From a computational pharmaceutics standpoint, the successful 
establishment of FormulationDT adds a vital piece to the new computer- 
driven drug development paradigm we proposed in 2023 [61]. As 
illustrated in Fig. 12, distinct from the conventional inefficient “screen- 
validate-rescreen” formulation development procedure, the new “un
derstand-design-validate-optimize” paradigm emphasizes the applica
tion of computational modeling to comprehend the in vivo fate of drugs 
and to guide the rational drug formulation design through an integrated 
computer-driven framework. FormulationDT will serve as the pivotal 
module of the in silico formulation design session. User-entered mole
cules will initially receive recommendations from FormulationDT for 
suitable formulation strategies. Subsequently, these molecules will 
progress to the next step into the FormulationAI [69] and PharmDE [70] 
modules. FormulationAI is an AI prediction platform for 16 essential 
formulation properties across six formulation types (cyclodextrin in
clusions, solid dispersions, phospholipid complexes, nanocrystals, self- 
emulsifying system, and liposomal formulations). Efficient in silico 
excipient selection and formulation & process parameter design can be 
accomplished by simply entering basic information of the drug and ex
cipients. PharmDE, for its part, was developed to complete drug- 
excipient compatibility assessments as part of excipient selections. 
Both the online webserver for FormulationAI (https://formulationai. 
computpharm.org/) and PharmDE (https://pharmde.computpharm. 
org/) are freely accessible. As a component of the in silico develop
ability assessment, the preformulation properties prediction module is 
currently under development, which will further improve the predictive 
performance and interpretability of FormulationDT. It’s expected that 
the development of FormulationDT and subsequent modules will propel 
the realization of an efficient computer-driven drug development 
paradigm.

Fig. 12. Future perspectives on the role of FormulationDT in computer-driven 
drug development framework.
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5. Conclusion

In summary, learning from a compiled dataset of approved drug 
products, the current study successfully designed and developed For
mulationDT, the first data-driven and knowledge-guided AI formulation 
strategy design platform for small molecules. Utilizing the PU-Decide 
framework, the efficient data representation, and the user-friendly 
webserver, the resulting AI platform can efficiently accomplish tasks 
at multiple stages of drug development, such as formulatability assess
ment, preclinical and clinical formulation strategy decisions. Bridging 
the gap in conventional formulation strategy decision-making, For
mulationDT emerges as a key puzzle piece in the new paradigm of 
computer-driven drug development. Promising to enhance drug devel
opment efficiency and improve drug quality, FormulationDT is poised 
for continual refinement through user feedback, ultimately showcasing 
its value in the Pharma 4.0 era.
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